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1
PREDICTING RISK OF RUNNING-RELATED
INJURY USING A MACHINE LEARNING
MODEL AND RELATED MACHINE
LEARNING TRAINING METHODS

CROSS REFERENCE TO RELATED
APPLICATIONS

This application claims priority to U.S. provisional appli-
cation No. 63/174,506, filed Apr. 13, 2021, titled “PRE-
DICTING RISK OF RUNNING-RELATED INJURY
USING A MACHINE LEARNING MODEL,” the disclo-
sure of which is incorporated herein by reference in its
entirety.

BACKGROUND

Running is a popular activity. For example, in the United
States, millions of people maintain fitness by running on a
regular basis. Running, however, poses a high risk of injury
due to the repetitive stress on the runner’s body. By some
estimates, more than 50 percent of runners experience an
injury each year. During time off, runners lose fitness, miss
opportunities, and experience adverse physical and mental
health effects. Unfortunately, preventing injuries is an
extremely difficult task. In fact, conventional injury preven-
tive measures are often either subjective (e.g., listen to your
body) or rules of thumb (e.g., avoid a week-to-week mileage
increase of greater than 10%). These conventional preven-
tion methods are also inaccurate. Moreover, researchers
have not yet uncovered any predictive characteristics (e.g.,
strength, flexibility, biomechanics, injury history, etc.) to
identify which runners are likely to get injured and/or why
so. See Hutchinson, Alex, The Elusive Art of Predicting
Injuries, Outside Online.com, published May 7, 2021,
https://www.outsideonline.com/2423442/running-injuries-
prediction-research (accessed May 8, 2021). There is there-
fore a need in the art for tools to predict running-related
injuries.

SUMMARY

An example machine learning-based method for predict-
ing risk of running-related injury is described herein. The
method includes receiving a runner profile, inputting the
runner profile into a trained machine learning model, and
predicting, using the trained machine learning model, a risk
of musculoskeletal injury based on the runner profile. The
runner profile includes at least one volume metric, at least
one intensity metric, and at least one consistency metric.

Additionally, in some implementations, the at least one
volume metric includes one or more of a daily run volume
metric, a short-term run volume metric, a medium-term run
volume metric, and a long-term run volume metric. The at
least one volume metric can be running duration or distance
data.

Alternatively or additionally, in some implementations,
the at least one intensity metric includes one or more of a
daily run intensity metric, a short-term run intensity metric,
a medium-term run intensity metric, and a long-term run
intensity metric.

Alternatively or additionally, in some implementations,
the at least one consistency metric includes one or more of
a short-term consistency metric, a medium-term consistency
metric, and a long-term consistency metric.

Optionally, in some implementations, the runner profile
further includes at least one variability metric. The at least
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2

one variability metric includes one or more of a short-term
variability metric, a medium-term variability metric, and a
long-term variability metric.

Optionally, in some implementations, the runner profile
further includes at least one long run fraction metric. The at
least one long run fraction metric includes one or more of a
short-term long run fraction metric, a medium-term long run
fraction metric, and a long-term long run fraction metric.

Optionally, in some implementations, the runner profile
further includes at least one dynamic metric.

Optionally, in some implementations, the runner profile
further includes a physiological metric. The physiological
metric can be heart rate data, oxygen saturation data, or VO,
max data.

Optionally, in some implementations, the prediction is a
probability of musculoskeletal injury. In other implementa-
tions, the prediction is a classification into a risk category.

In some implementations, the machine learning model is
a supervised learning model or a semi-supervised learning
model. For example, the machine learning model can be a
logistic regression model, a support vector machine, or an
artificial neural network. Optionally, the machine learning
model is a deep learning model.

An example machine learning-based system for predict-
ing risk of running-related injury is also described herein.
The system includes a trained machine learning model, and
a computing device. The computing device includes a pro-
cessor and a memory, the memory having computer-execut-
able instructions stored thereon. The computing device is
configured to receive a runner profile, input the runner
profile into the trained machine learning model, and receive,
from the trained machine learning model, a risk of muscu-
loskeletal injury. The trained machine learning model pre-
dicts the risk of musculoskeletal injury based on the runner
profile. The runner profile includes at least one volume
metric, at least one intensity metric, and at least one con-
sistency metric.

An example method for training a machine learning
model is also described herein. The method includes receiv-
ing a dataset including running-related data, where the
running-related data includes a plurality of samples tagged
with respective running-related injury labels. The method
also includes augmenting the dataset, where the augmented
dataset further includes a plurality of synthetic samples
tagged with respective running-related injury labels. The
method further includes training a machine learning model
using the augmented dataset. The trained machine learning
model is configured for predicting risk of running-related
injury.

In some implementations, the step of augmenting the
dataset includes creating the plurality of synthetic samples
from the running-related data. For example, a synthetic
sample is created by adjusting a value of at least one metric
associated with a sample tagged with an injury state label.
Optionally, the step of augmenting the dataset further
includes imposing a knowledge-based limitation on the
adjusted value of the at least one metric associated with the
sample tagged with the injury state label.

Alternatively or additionally, in some implementations,
the running-related data includes at least one volume metric,
at least one intensity metric, at least one consistency metric,
at least one long run fraction metric, or at least one vari-
ability metric. Optionally, in some implementations, the
running-related data includes the at least one volume metric,
the at least one intensity metric, the at least one consistency
metric, and the at least one long run fraction metric. Addi-
tionally, the running-related data optionally further includes
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at least one dynamic metric. Alternatively or additionally,
the running-related data optionally further includes at least
one physiological metric.

In some implementations, the dataset includes respective
running-related data associated with a plurality of runners.
Alternatively, in other implementations, the dataset includes
running-related data associated with a single runner.

Alternatively or additionally, the at least one volume
metric includes one or more of a short-term volume metric,
a medium-term volume metric, and a long-term volume
metric. Alternatively or additionally, the at least one inten-
sity metric includes one or more of a short-term intensity
metric, a medium-term intensity metric, and a long-term
intensity metric. Alternatively or additionally, the at least
one consistency metric includes one or more of a short-term
consistency metric, a medium-term consistency metric, and
a long-term consistency metric. Alternatively or addition-
ally, the at least one long run fraction metric includes one or
more of a short-term long run fraction metric, a medium-
term long run fraction metric, and a long-term long run
fraction metric. Alternatively or additionally, the at least one
variability metric includes one or more of a short-term
variability metric, a medium-term variability metric, and a
long-term variability metric.

In some implementations, the trained machine learning
model is configured to predict risk of running-related injury
by classifying a runner profile into one of a plurality of risk
categories. In other implementations, the trained machine
learning model is configured to predict risk of running-
related injury by providing a probability of musculoskeletal
injury for a runner profile.

In some implementations, the step of training the machine
learning model includes minimizing or maximizing an
objective function. Optionally, the objective function is an
error between the machine learning model’s running-related
injury risk prediction and ground truth.

In some implementations, the method optionally further
includes evaluating performance of the trained machine
learning model using an accuracy measure such as an
F-score or area under the receiver operator curve (AUC).

In some implementations, the method optionally further
includes preprocessing the dataset or the augmented dataset.
For example, the step of preprocessing can include data
feature scaling.

In some implementations, the machine learning model is
a deep learning model. For example, the deep learning
model is an artificial neural network.

An example method for predicting risk of running-related
injury is also described herein. The method includes training
a machine learning model as described above. The method
also includes inputting a runner profile into the trained
machine learning model; and predicting, using the trained
machine learning model, a risk of musculoskeletal injury,
where the trained machine learning model is configured to
predict risk of running-related injury.

In some implementations, the runner profile includes at
least one volume metric, at least one intensity metric, at least
one consistency metric, at least one long run fraction metric,
at least one variability metric, at least one dynamic metric,
or at least one physiological metric. Optionally, the runner
profile includes the at least one volume metric, the at least
one intensity metric, the at least one consistency metric, and
the at least one long run fraction metric.

In some implementations, the risk of musculoskeletal
injury is a classification into one of a plurality of risk
categories. In other implementations, the risk of musculo-
skeletal injury is a probability of musculoskeletal injury.
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In some implementations, the machine learning model is
a deep learning model.

It should be understood that the above-described subject
matter may also be implemented as a computer-controlled
apparatus, a computer process, a computing system, or an
article of manufacture, such as a computer-readable storage
medium.

Other systems, methods, features and/or advantages will
be or may become apparent to one with skill in the art upon
examination of the following drawings and detailed descrip-
tion. It is intended that all such additional systems, methods,
features and/or advantages be included within this descrip-
tion and be protected by the accompanying claims.

BRIEF DESCRIPTION OF THE DRAWINGS

The components in the drawings are not necessarily to
scale relative to each other. Like reference numerals desig-
nate corresponding parts throughout the several views.

FIG. 1 is a block diagram illustrating a machine learning
model operating in inference mode according to an imple-
mentation described herein.

FIG. 2A is a table illustrating example running-related
data according to an implementation described herein. FIG.
2B is a table illustrating example running-related data that is
grouped by week according to an implementation described
herein.

FIG. 3 is a table illustrating example volume and intensity
metrics according to an implementation described herein.

FIG. 4 is a table illustrating example consistency metrics
according to an implementation described herein.

FIG. 5 is a table illustrating example variability metrics
according to an implementation described herein.

FIG. 6 is a table illustrating example long run fraction
metrics according to an implementation described herein.

FIG. 7 is a flow diagram illustrating example operations
for predicting running-related injury according to an imple-
mentation described herein.

FIGS. 8A-8D are tables illustrating example machine
learning model features according to implementations
described herein. The table of FIG. 8A includes volume,
intensity, and consistency metrics. The table of FIG. 8B
includes volume, intensity, consistency, and variability met-
rics. The table of FIG. 8C includes volume, intensity,
consistency, and long run fraction metrics. The table of FIG.
8D includes volume, intensity, consistency, variability, and
long run fraction metrics.

FIG. 9 is a flow diagram illustrating example operations
for training a machine learning model according to an
implementation described herein.

FIG. 10 is an example computing device.

FIG. 11 is an excerpt from an example labeled dataset
including running-related data for one individual runner
according to an implementation described herein.

FIG. 12 is a table of example knowledge-based limita-
tions used for creating synthetic data according to an imple-
mentation described herein.

FIG. 13 is example pseudocode for creating a synthetic
sample according to an implementation described herein.

FIG. 14 is an excerpt from an example augmented labeled
dataset after data scaling according to an implementation
described herein.

FIG. 15 is a table illustrating an area under the receiver
operating curve (AUC) analysis for a plurality of machine
learning models trained using a scaled, augmented dataset
(e.g., FIG. 14) according to an implementation described
herein.
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FIG. 16 is a table illustrating example feedforward arti-
ficial neural network (ANN) architecture and hyperparam-
eters according to an implementation described herein. The
example ANN was trained using a scaled, augmented dataset
(e.g., FIG. 14). The ANN has 12 input nodes for receiving
short-, medium-, and long-term metrics for each of volume,
intensity, consistency, and long run fraction (i.e., the model
“features”).

FIG. 17 is a graph illustrating model loss for the ANN of
FIG. 16 during training.

FIG. 18 is a graph illustrating AUC for the ANN of FIG.
16 during training.

FIG. 19A is a table illustrating raw and scaled inference
data associated with an example training plan for the week
of Feb. 21, 2022. FIG. 19B illustrates the model input and
output associated with the inference data of FIG. 19A. The
model is the trained ANN of FIG. 16.

FIG. 20A is a table illustrating raw and scaled inference
data associated with an example training plan for the week
of Feb. 28, 2022. FIG. 20B illustrates the model input and
output associated with the inference data of FIG. 20A. The
model is the trained ANN of FIG. 16.

FIG. 21A is a table illustrating raw and scaled inference
data associated with an alternative example training plan for
the week of Feb. 28, 2022. FIG. 21B illustrates the model
input and output associated with the inference data of FIG.
21A. The model is the trained ANN of FIG. 16.

DETAILED DESCRIPTION

Unless defined otherwise, all technical and scientific
terms used herein have the same meaning as commonly
understood by one of ordinary skill in the art. Methods and
materials similar or equivalent to those described herein can
be used in the practice or testing of the present disclosure.
As used in the specification, and in the appended claims, the
singular forms “a,” “an,” “the” include plural referents
unless the context clearly dictates otherwise. The term
“comprising” and variations thereof as used herein is used
synonymously with the term “including” and variations
thereof and are open, non-limiting terms. The terms
“optional” or “optionally” used herein mean that the subse-
quently described feature, event or circumstance may or may
not occur, and that the description includes instances where
said feature, event or circumstance occurs and instances
where it does not. Ranges may be expressed herein as from
“about” one particular value, and/or to “about” another
particular value. When such a range is expressed, an aspect
includes from the one particular value and/or to the other
particular value. Similarly, when values are expressed as
approximations, by use of the antecedent “about,” it will be
understood that the particular value forms another aspect. It
will be further understood that the endpoints of each of the
ranges are significant both in relation to the other endpoint,
and independently of the other endpoint. As used herein, the
terms “about” or “approximately” when referring to a mea-
surable value such as an amount, a percentage, and the like,
is meant to encompass variations of +20%, £10%, 5%, or
+1% from the measurable value. While implementations
will be described for predicting musculoskeletal injury in a
runner using an artificial neural network, it will become
evident to those skilled in the art that the implementations
are not limited thereto, but are applicable for providing
predictions with other supervised or semi-supervised
machine learning models.

Described herein are machine learning-based systems and
methods for predicting risk of musculoskeletal injury in a
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runner. As noted above, runners are at high risk of injury
due, at least in part, to the repetitive stress running imposes
on the human body. For example, more than 50% of runners
(780% according to some estimates) experience an injury
each year. This is particularly true for long distance runners.
The machine learning-based systems and methods described
herein can predict risk of musculoskeletal injury based on
patterns present in running-related data. For example, the
interrelationship between running volume, intensity, consis-
tency, variability, fractional contribution of long run, and
other characteristics is highly complex. Machine learning is
a technical tool that is capable of analyzing complex data
and identifying patterns in data. As described herein, the
machine learning-based systems and methods analyze the
interrelationship between running volume, intensity, frac-
tional long run contribution, and consistency (and optionally
in some implementations, variability, dynamics, and/or
physiology) in a runner’s data. According to this disclosure,
analyzing, using a machine learning model, a runner’s
consistency, variability, long runs, or combinations thereof
in addition to the runner’s volume and intensity can provide
information predictive of injury. Thus, the machine learning-
based systems and methods described herein provide
improvements over conventional injury prevention mea-
sures, which are inaccurate at best, subjective, and/or merely
rule of thumb. Unlike the technical solutions described
herein, conventional techniques cannot identify which com-
bination of relative change in running volume, intensity, and
consistency (or variability, long run fraction, or other fea-
ture) leads to an increased injury risk. For example, it is not
uncommon for even an experienced runner to sustain an
injury despite “listening to his body” and carefully manag-
ing changes in training (e.g., volume, intensity, etc.). In
contrast, the machine learning-based systems and methods
described herein approach the problem in a technical manner
and are thus capable of finding patterns in a runner’s data
and predicting risk of injury (see Examples below). The
improved injury prevention techniques of this disclosure
therefore facilitate better training outcomes and also keep
runners active, which has positive impact on both physical
and mental health of the runner. The systems and methods
described herein also facilitate a runner’s ability to optimize
the volume and intensity of training while at the same time
lowering risk of injury. Moreover, the machine learning
model training methods described herein provide solutions
to technical problems presented by running-related datasets.
Such solutions include, but are not limited to, data augmen-
tation in a matter tailored specifically to running-related
data, for example, by imposing knowledge-based limitations
on creation of synthetic data.

As used herein, musculoskeletal injuries affect a runner’s
bones, joints, or soft tissues such as muscles, tendons,
ligaments, or other connective tissue. Running-related inju-
ries include, but are not limited to, those affecting the feet,
knees, upper or lower legs, hips, pelvis, or groin. Example
running-related musculoskeletal injuries include, but are not
limited to, stress fractures, tendonitis, plantar fasciitis, ili-
otibial (IT) band syndrome, strains, and sprains. Addition-
ally, this disclosure contemplates that a musculoskeletal
injury forces a runner to rest (not run) for an extend period
of time (e.g., from 3-5 days or longer such as several weeks,
months, or even longer). Thus, as used herein, a running-
related injury results in a runner taking 3 or more consecu-
tive days of rest. It has been shown that a human’s bones and
muscles weaken as a result of inactivity. Thus, ramping up
training post-injury is known to be associated with higher
risk of injury.
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Referring now to FIG. 1, a block diagram illustrating a
machine learning model 100 is shown. In FIG. 1, the
machine learning model 100 is operating in inference mode.
In other words, the machine learning model 100 has already
been trained with a data set (or “dataset”). This disclosure
contemplates that the machine learning model 100 is a
supervised learning model. According to supervised learn-
ing, the machine learning model 100 “learns™ a function that
maps an input 110 (sometimes referred to herein as the
“features”) to an output 120 (sometimes referred to herein as
the “target”) based on a data set, which includes a plurality
of samples (e.g., the model input, features, or runner profile
described herein) tagged with one or more labels (e.g., the
injury/no injury tags described herein), during model train-
ing mode. It should be understood that supervised learning
is provided only as an example. This disclosure contem-
plates that the machine learning model 100 may be a
semi-supervised learning model in some implementations.
Semi-supervised learning models are trained with a data set
including both labeled data as well as unlabeled data.

The machine learning model 100 shown in FIG. 1 can be
an artificial neural network. Optionally, the machine learn-
ing model 100 is a deep neural network, which includes
multiple hidden layers between the input and output layers
(described below). An artificial neural network is a comput-
ing system including a plurality of interconnected neurons
(e.g., also referred to as “nodes”). This disclosure contem-
plates that the nodes can be implemented using a computing
device (e.g., a processing unit and memory as described
herein). The nodes can optionally be arranged in a plurality
of layers such as input layer, output layer, and one or more
hidden layers. Each node is connected to one or more other
nodes in the artificial neural network. For example, each
layer has a plurality of nodes, where each node is connected
to all nodes in the previous layer. The nodes in a given layer
are not interconnected with one another, i.e., the nodes in a
given layer function independently of one another. As used
herein, nodes in the input layer receive data (sometimes
referred to herein as the “features” or input 110) from
outside of the artificial neural network, nodes in the hidden
layer(s) modify the data between the input and output layers,
and nodes in the output layer provide the results (sometimes
referred to herein as the “target” or output 120).

Each node in the artificial neural network is configured to
receive an input and implement a function (sometimes
referred to herein as the “activation function™). In other
words, the activation function defines the node output for a
given input. Activation functions include, but are not limited
to, binary step, sigmoid, tanh, and rectified linear unit
(ReLLU). Additionally, each node is associated with a respec-
tive weight. Artificial neural networks are trained with a data
set to minimize or maximize an objective function, which is
a measure of the artificial neural network’s performance.
The objective function may be a cost function. Cost func-
tions include, but are not limited to, mean squared error
(MSE), mean absolute error, [.1 loss (least absolute devia-
tions), L2 loss (least squares loss), and cross-entropy loss.
Training algorithms for artificial neural networks include,
but are not limited to, backpropagation (BP). The training
algorithm tunes the node weights and/or bias to minimize or
maximize the objective function. For example, BP involves
computing the gradient of the objective function with
respect to the respective weights for each of the nodes. It
should be understood that any algorithm that finds the
minimum or maximum of the objective function can be used
to for training an artificial neural network. Although artifi-
cial neural networks are provided as an example, this
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disclosure contemplates that the machine learning model
100 can be other types of models including, but not limited
to, a logistic regression model or a support vector machine.

As described above, the machine learning model 100 is
trained to map the input 110 to the output 120. In the
examples described herein, the input 110 is a runner profile,
and the output 120 is a risk of musculoskeletal injury, e.g.,
running-related musculoskeletal injury. As used herein, the
risk of musculoskeletal injury can be a classification (e.g.,
injury or no injury) in some implementations or a predicted
risk value (e.g., regression) in other implementations. As
described above, musculoskeletal injuries affect a runner’s
bones, joints, or soft tissues and also force the runner to rest
for an extended time period. The runner profile includes one
or more “features” that are input into the machine learning
model 100, which predicts risk of musculoskeletal injury
based on the features. The risk of musculoskeletal injury is
therefore the “target” of the machine learning model 100.

This disclosure contemplates that the features of the
runner profile can be obtained from a runner’s log, e.g., the
record used to track running-related information such as
mileage, running duration, physiological data, environmen-
tal conditions, injuries, or other information related to run-
ning. Optionally, the runner’s log is maintained in an elec-
tronic medium. For example, Internet-based services for
tracking fitness data are in common use by runners. Example
Internet-based services include, but are not limited to, the
STRAVA mobile app and website of Strava, Inc. of San
Francisco, Calif. and GARMIN CONNECT mobile app and
website of Garmin International of Olathe, Kans. It should
be understood that the STRAVA and GARMIN CONNECT
mobile apps and websites are provided only as example
Internet-based services. This disclosure contemplates that
other electronic and/or Internet-based services may be used
to track running-related data.

Internet-based services maintain a vast amount of run-
ning-related data for a plurality of runners. For example, the
STRAVA mobile app and website currently (year 2021) has
approximately 76 million users. Running-related data
includes, but is not limited to, global positioning system
(GPS) route data (e.g., XML format files such as GPX or
TCX files); mileage; duration; pace; speed; sensor data (e.g.,
heart rate monitor, accelerometer, etc.); dynamic data (e.g.,
cadence, stride length); perceived effort; and free-form com-
ments. Such running-related data is primarily measured
using a device, for example, a running watch, fitness tracker,
or mobile phone. These devices include built-in location
service such as GPS and, optionally, built-in or external
sensors. An example running watch is the GARMIN FORE-
RUNNER watch of Garmin International of Olathe, Kans. It
should be understood that the GARMIN FORERUNNER
watch is provided only as an example. This disclosure
contemplates that other devices may be used to measure
running-related data. Alternatively or additionally, running-
related data may be entered or altered by the runner.

FIG. 2A is a table illustrating example raw running-
related data for an example runner for the month of Sep-
tember 2020. The running-related data was downloaded
from an Internet-based runner’s log. The features input into
the machine learning model 100 (i.e., the input 110) can
include, but are not limited to, volume metrics (e.g., “Dis-
tance”, “Time” in FIG. 2A), intensity metrics (e.g., “Avg
Pace” in FIG. 2A), consistency metrics, variability metrics,
long run fraction metrics, dynamic metrics (e.g., “Avg Stride
Length” in FIG. 2A), and/or physiological metrics (e.g.,
“Avg HR” in FIG. 2A). As described herein, the features are
taken and/or derived from the running-related data. The
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target predicted by the machine learning model 100 (i.e., the
output 120) is a risk of musculoskeletal injury. Optionally,
this disclosure contemplates that the running-related data
may be tagged with a type of musculoskeletal injury (e.g.,
hip, knee, ankle, foot, tendon, ligament, etc.). Additionally,
it should be understood that running-related data can be
downloaded or exported from Internet-based service runner
logs, for example, as a comma separated value (CSV) file,
an XLS file, or other format file.

FIG. 2B is a table illustrating example raw running-
related data that is grouped by week for the example runner
for the months of August and September 2020. The running-
related data was downloaded from an Internet-based run-
ner’s log. The features input into the machine learning
model 100 (i.e., the input 110) can include, but are not
limited to, volume metrics (e.g., “Total Distance”, “Total
Activity Time” in FIG. 2B), intensity metrics (e.g., average
pace or speed derived from “Total Distance”, “Total Activity
Time” in FIG. 2B), consistency metrics (e.g., derived from
“Activities” in FIG. 2B), variability metrics, long run frac-
tion metrics (e.g., derived from “Total Distance”, “Max
Distance” in FIG. 2B), dynamic metrics, and/or physiologi-
cal metrics. As described herein, the features are taken
and/or derived from the running-related data. The target
predicted by the machine learning model 100 (i.e., the output
120) is a risk of musculoskeletal injury. As shown in FIG.
2B, the running-related data includes a column for labelling
or tagging injuries (e.g., “Injury Label” in FIG. 2B). In FIG.
2B, label ‘1’ indicates an injured state (sometimes also
referred to herein as “injury state”), and label ‘0’ indicates an
uninjured state (sometimes also referred to herein as “non-
injury state” or “non-injured state”). In the example of FIG.
2B, the runner sustained a musculoskeletal injury during the
week of Aug. 31, 2020. The labelling results in samples
(e.g., the model input or runner profile described herein)
tagged with one or more labels (e.g., Injury Labels) for
machine learning model training. Optionally, this disclosure
contemplates that the running-related data may be tagged
with a type of musculoskeletal injury (e.g., hip, knee, ankle,
foot, tendon, ligament, etc.). Additionally, it should be
understood that running-related data can be downloaded or
exported from Internet-based service runner logs, for
example, as a comma separated value (CSV) file, an XIS
file, or other format file.

It should be understood that a runner’s device (e.g.,
running watch) can be operably connected to a computing
device (e.g., using low-power wireless protocol such as
BLUETOOTH or WiF1i) such that data can be transferred to
the Internet-based service. Data transfer can be accom-
plished on a periodic basis (e.g., daily). The Internet-based
service maintains the running-related data, which is aggre-
gated over time (e.g., weekly, monthly, yearly, etc.) allowing
the runner to track fitness, progress, training, and goals.

As described below, metrics are provided for short-term,
medium-term, and long-term periods. As used herein, a
short-term period represents a training period. A training
period can optionally be a 7 day period (e.g., a calendar
week). It should be understood that a training period may be
more or less than 7 days (e.g., a 10-day or 5-day period). It
should also be understood that the training period length can
be selected by a runner. As used herein, a medium-term
period includes a plurality of training periods. The number
of training periods in a medium-term period is selected to
create metrics representing the transient fitness level of and
stress on the runner. For example, the medium-term period
can be a 2-4 week period (i.e., 2-4, 7-day training periods).
It should be understood that 2-4 weeks is only provided as
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an example. As used herein, a long-term period includes a
plurality of training periods, which is greater than the
number of training periods of the medium-term period. The
number of training periods in a long-term period is selected
to create metrics representing the base fitness level of and
stress on the runner. For example, the long-term period can
be a 12-24 week period (i.e., 12-24, 7-day training periods).
It should be understood that 12-24 weeks is only provided as
an example.

A runner profile includes at least one volume metric.
Volume metrics include, but are not limited to, a daily
volume metric, a short-term volume metric, a medium-term
volume metric, and a long-term volume metric. Optionally,
in some implementations, the volume metrics includes a
short-term volume metric, a medium-term volume metric,
and a long-term volume metric. This disclosure contem-
plates that a volume metric is a measure of running time or
duration (e.g., hours, minutes, seconds) and/or running
distance (e.g., miles, kilometers). Additionally, this disclo-
sure contemplates that the volume metrics can be obtained
(e.g., received, downloaded, etc.) and/or derived from the
electronic runner’s log described above. As used herein, a
daily volume metric is a 1-day cumulative run length (e.g.,
daily total), which can optionally include one or more runs.
As used herein, a short-term volume metric is the cumulative
run length during a training period. Additionally, as
described above, a training period can optionally be a 7 day
period (e.g., a calendar week). It should be understood that
a training period may be more or less than 7 days (e.g., a
10-day or 5-day period). As used herein, a medium-term
volume metric is an average cumulative run length over a
plurality of training periods, for example, the average train-
ing period (e.g., weekly) run length over a 2-4 week period.
It should be understood that 2-4 weeks is only provided as
an example medium-term period. As used herein, a long-
term volume metric is an average cumulative run length over
a plurality of training periods, for example, the average
training period (e.g., weekly) run length over a 12-24 week
period. It should be understood that 12-24 weeks is only
provided as an example long-term period. The short-,
medium-, and long-term volume metrics represent cumula-
tive run lengths over progressively longer periods of time.
Additionally, as described above, run length can be mea-
sured by a duration and/or a distance.

A runner profile also includes at least one intensity metric.
Intensity metrics include, but are not limited to, a daily
intensity metric, a short-term intensity metric, a medium-
term intensity metric, and a long-term intensity metric.
Optionally, in some implementations, the intensity metrics
includes a short-term intensity metric, a medium-term inten-
sity metric, and a long-term intensity metric. This disclosure
contemplates that an intensity metric is a running pace or
running speed. Pace is measured as a time per distance unit
(e.g., minutes per mile or minutes per kilometer). Speed is
measured as distance per unit time (e.g., miles per hour or
kilometers per hour). Additionally, this disclosure contem-
plates that the intensity metrics can be obtained (e.g.,
received, downloaded, etc.) and/or derived from the elec-
tronic runner’s log described above. As used herein, a daily
intensity metric is a 1-day average intensity (e.g., pace or
speed). As used herein, a short-term intensity metric is the
average intensity (e.g., pace or speed) during a training
period. As used herein, a medium-term intensity metric is
the average intensity (e.g., pace or speed) over a plurality of
training periods. As used herein, a long-term intensity metric
is the average intensity (e.g., pace or speed) over a plurality
of training periods. The daily, short-, medium-, and long-
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term intensity metrics represent average intensity over pro-
gressively longer periods of time. Additionally, as described
above, run intensity can be measured by pace or speed.

FIG. 3 is a table illustrating short-term, medium-term, and
long-term volume and intensity metrics. For example, the
table includes short-term volume metrics (“Distance ST”,
“Time ST”), medium-term volume metrics (“Distance MT”,
“Time MT”), and long-term volume metrics (“Distance LT”,
“Time LT”) for an example runner during five consecutive
weeks in November and December of 2020. The table also
includes short-term intensity metrics (“Intensity ST”),
medium-term intensity metrics (“Intensity MT”), and long-
term intensity metrics (“Intensity LT”) for the example
runner during five consecutive weeks in November and
December of 2020. In FIG. 3, the short-term, medium-term,
and long-term periods are 1, 3, and 12 weeks, respectively.
As described above, these lengths are provided only as
examples. Additionally, it should be understood that the
metrics shown in FIG. 3 were calculated from data included
in the example runner’s electronic log (see e.g., FIG. 2A).
This disclosure contemplates that short-term, medium-term,
and/or long-term metrics can be calculated using any tools
known in the art including, but not limited to a spreadsheet
(e.g., MICROSOFT EXCEL spreadsheets of Microsoft
Corp. of Redmond, Wash.), a computer program or appli-
cation (e.g., MATLAB platform of MathWorks Corp. of
Natick, Mass.), or a programming language (e.g., Python)
library or toolkit.

A runner profile also includes at least one consistency
metric. Consistency metrics include, but are not limited to,
a short-term consistency metric, a medium-term consistency
metric, and a long-term consistency metric. This disclosure
contemplates that a consistency metric represents a number
of running days (or number of runs) during the short-term,
medium-term, and/or long-term periods. Additionally, this
disclosure contemplates that the consistency metrics can be
obtained (e.g., received, downloaded, etc.) and/or derived
from the electronic runner’s log described above. As used
herein, a short-term consistency metric is the number of
running days or raw number of runs during a training period.
For example, if a runner ran every day Monday through
Friday during a 7-day training period, then the short-term
consistency metric is 5. As used herein, a medium-term
consistency metric is the average consistency over a plural-
ity of training periods. For example, if a runner ran 5, 6, and
7 days during each of three consecutive 7-day training
periods, respectively, then the medium-term consistency
metric is 6. As used herein, a long-term intensity metric is
the average consistency over a plurality of training periods.
For example, if a runner ran 5, 6, 7,0, 1,1, 5, 6,7, 4,2, and
4 days during each of twelve consecutive 7-day training
periods, respectively, then the long-term consistency metric
is 4. The short-, medium-, and long-term consistency metrics
represent a runner’s training period-to-training period con-
sistency over progressively longer periods of time. Addi-
tionally, as described above, consistency can be measured by
a number of running days or raw number of runs. This
disclosure contemplates that patterns predictive of injury
risk are present in the combination of volume, intensity, and
consistency metrics found in running-related data.

FIG. 4 is a table illustrating short-term, medium-term, and
long-term consistency metrics. For example, the table
includes short-term consistency metrics (“Consistency ST”),
medium-term consistency metrics (“Consistency MT”), and
long-term consistency metrics (“Consistency LT”) for an
example runner during five consecutive weeks in November
and December of 2020. In FIG. 4, the short-term, medium-
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term, and long-term periods are 1, 3, and 12 weeks, respec-
tively. As described above, these lengths are provided only
as examples. Additionally, it should be understood that the
metrics shown in FIG. 4 were calculated from data included
in the example runner’s electronic log (see e.g., FIG. 2A). As
described above, this disclosure contemplates that short-
term, medium-term, and/or long-term metrics can be calcu-
lated using any tools known in the art.

Additionally, a runner profile optionally includes at least
one variability metric. Variability metrics include, but are
not limited to, a short-term variability metric, a medium-
term variability metric, and a long-term variability metric.
This disclosure contemplates that a variability metric rep-
resents a number of high-intensity running days (or number
of high-intensity runs) during the short-term, medium-term,
and/or long-term periods. As used herein, a high-intensity
run is a run requiring greater than ordinary effort by a runner.
For example, a workout and a race are considered high-
intensity runs. Additionally, this disclosure contemplates
that the variability metrics can be obtained (e.g., received,
downloaded, etc.) and/or derived from the electronic run-
ner’s log described above. As used herein, a short-term
variability metric is the number of high-intensity running
days or raw number of high-intensity runs during a training
period. For example, if a runner ran with high-intensity (e.g.,
workout, race, etc.) twice during a 7-day training period,
then the short-term variability metric is 2. As used herein, a
medium-term variability metric is the average variability
over a plurality of training periods. For example, if a runner
ran with high intensity (e.g., workout, race, etc.) 2, 1, and 1
days during each of three consecutive 7-day training peri-
ods, respectively, then the medium-term variability metric is
1.33. As used herein, a long-term variability metric is the
average variability over a plurality of training periods. For
example, if a runner ran with high intensity (e.g., workout,
race, etc.)2,1,1,0,0,1, 1,2, 2,0, 1, and 1 days during each
of twelve consecutive 7-day training periods, respectively,
then the long-term variability metric is 1. The short-,
medium-, and long-term variability metrics capture training
period-to-training period high-intensity efforts over progres-
sively longer periods of time. Additionally, as described
above, variability can be measured by a number of high-
intensity running days or raw number of high-intensity runs.
This disclosure contemplates that patterns predictive of
injury risk are present in the combination of volume, inten-
sity, consistency, and variability metrics found in running-
related data.

FIG. 5 is a table illustrating short-term, medium-term, and
long-term variability metrics. For example, the table
includes short-term variability metrics (‘“Variability ST”),
medium-term variability metrics (“Variability MT”), and
long-term variability metrics (“Variability LT”) for an
example runner during five consecutive weeks in November
and December of 2020. In FIG. 5, the short-term, medium-
term, and long-term periods are 1, 3, and 12 weeks, respec-
tively. As described above, these lengths are provided only
as examples. Additionally, it should be understood that the
metrics shown in FIG. 5 were calculated from data included
in the example runner’s electronic log (see e.g., FIG. 2A). As
described above, this disclosure contemplates that short-
term, medium-term, and/or long-term metrics can be calcu-
lated using any tools known in the art.

Alternatively or additionally, a runner profile optionally
includes at least one long run fraction metric. Long run
fraction metrics include, but are not limited to, one or more
of'a short-term long run fraction metric, a medium-term long
run fraction metric, and a long-term long run fraction metric.
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This disclosure contemplates that a long run fraction metric
represents a long run volume divided by a training period
volume. For example, if a runner’s longest run during a
7-day training period is 10 miles and the runner’s total
mileage during the 7-day training period is 50 miles, the
long run fraction metric is 0.2. Additionally, this disclosure
contemplates that the long run fraction metrics can be
obtained (e.g., received, downloaded, etc.) and/or derived
from the electronic runner’s log described above. As used
herein, a short-term long run fraction metric is a long run
volume divided by total volume during a training period. For
example, the short-term long run fraction metric is 0.2 when
a runner’s longest run is 10 miles during 7-day training
period where total mileage is 50 miles. As used herein, a
medium-term long run fraction metric is the average long
run fraction metric over a plurality of training periods. For
example, if a runner’s long run fraction is 0.2, 0.3, and 0.4
during each of three consecutive 7-day training periods,
respectively, then the medium-term long run fraction metric
is 0.3. As used herein, a long-term long run fraction metric
is the average long run fraction metric over a plurality of
training periods. For example, if a runner’s long run fraction
is 0.2, 0.3, 0.4, 0.25, 0.3, 0.25, 0.2, 0.2, 0.4, 0.3, 0.25, and
0.2 during each of twelve consecutive 7-day training peri-
ods, respectively, then the long-term long run fraction metric
is 0.27. The short-, medium-, and long-term long run frac-
tion metrics capture the training period-to-training period
fractional contribution of a runner’s longest run to total
volume over progressively longer periods of time. This
disclosure contemplates that patterns predictive of injury
risk are present in the volume, intensity, consistency, vari-
ability, long run fraction metrics, or combinations thereof
found in running-related data.

FIG. 6 is a table illustrating short-term, medium-term, and
long-term long run fraction metrics. For example, the table
includes short-term long run fraction metrics (“Long Run
Fraction ST”), medium-term long run fraction metrics
(“Long Run Fraction MT”), and long-term long run fraction
metrics (“Long Run Fraction LT”) for an example runner
during five consecutive weeks in November and December
of 2020. In FIG. 6, the short-term, medium-term, and
long-term periods are 1, 3, and 12 weeks, respectively. As
described above, these lengths are provided only as
examples. Additionally, it should be understood that the
metrics shown in FIG. 6 were calculated from data included
in the example runner’s electronic log (see e.g., FIG. 2A). As
described above, this disclosure contemplates that short-
term, medium-term, and/or long-term metrics can be calcu-
lated using any tools known in the art.

Alternatively or additionally, a runner profile optionally
includes at least one dynamic metric. Dynamic metrics
include, but are not limited to, a daily dynamic metric, a
short-term dynamic metric, a medium-term dynamic metric,
and a long-term dynamic metric. Optionally, in some imple-
mentations, the dynamic metrics includes a short-term
dynamic metric, a medium-term dynamic metric, and a
long-term dynamic metric. This disclosure contemplates that
a dynamic metric defines an aspect of a runner’s motion.
Dynamic metrics can be derived from sensor data such as
accelerometer or internal sensor data. Example dynamic
metrics include, but are not limited to, cadence or stride
length. Additionally, this disclosure contemplates that the
dynamic metrics can be obtained (e.g., received, down-
loaded, etc.) and/or derived from the electronic runner’s log
described above. For example, the table in FIG. 2A includes
an example dynamic metric—stride length. As used herein,
a daily dynamic metric is a 1-day average dynamic metric
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such as cadence or stride length. As used herein, a short-term
dynamic metric is the average dynamic metric such as
cadence or stride length during a training period. As used
herein, a medium-term dynamic metric is the average
dynamic metric such as cadence or stride length over a
plurality of training periods. As used herein, a long-term
dynamic metric is the average dynamic metric such as
cadence or stride length over a plurality of training periods.
The daily, short-, medium-, and long-term dynamic metrics
represent average dynamic metrics such as cadence or stride
length over progressively longer periods of time. This dis-
closure contemplates that patterns predictive of injury risk
are present in the combination of volume, intensity, consis-
tency, variability, long run fraction, and dynamic metrics
found in running-related data.

Alternatively or additionally, a runner profile optionally
includes a physiological metric. Physiological metrics
include, but are not limited to, a daily physiological metric,
a short-term physiological metric, a medium-term physi-
ological metric, and a long-term physiological metric.
Optionally, in some implementations, the physiological met-
rics includes a short-term physiological metric, a medium-
term physiological metric, and a long-term physiological
metric. Physiological metrics include, but are not limited to,
heart rate data, oxygen saturation data, or VO, max data, for
example. Additionally, this disclosure contemplates that the
physiological metrics can be obtained (e.g., received, down-
loaded, etc.) and/or derived from the electronic runner’s log
described above. For example, the table in FIG. 2A includes
an example dynamic metric—heart rate. As used herein, a
daily physiological metric is a 1-day average physiological
metric such as heart rate during a run. As used herein, a
short-term physiological metric is the average physiological
metric such as running heart rate during a training period. As
used herein, a medium-term physiological metric is the
average physiological metric such as running heart rate over
a plurality of training periods. As used herein, a long-term
physiological metric is the average physiological metric
such as running heart rate over a plurality of training
periods. The daily, short-, medium-, and long-term physi-
ological metrics represent the average physiological metric
over progressively longer periods of time. This disclosure
contemplates that patterns predictive of injury risk are
present in the combination of volume, intensity, consistency,
variability, long run fraction, dynamic, and physiological
metrics found in running-related data.

Referring now to FIG. 7, an example machine learning-
based method for predicting risk of running-related injury is
shown. This disclosure contemplates that the method of FIG.
7 can be performed using a computing device, e.g., com-
puting device 1000 shown in FIG. 10. At step 702, a runner
profile is received at a computing device. As described
herein, the runner profile includes running-related data (see
e.g., FIGS. 2A and 2B). Additionally, the runner profile
includes at least one volume metric (see e.g., FIG. 3), at least
one intensity metric (see e.g., FIG. 3), and at least one
consistency metric (see e.g., FIG. 4). Optionally, the runner
profile further includes at least one variability metric (see
e.g., FIG. 5). Alternatively or additionally, the runner profile
optionally further includes at least one long run fraction
metric (see e.g., FIG. 6). Alternatively or additionally, the
runner profile optionally further includes at least one
dynamic metric. Alternatively or additionally, the runner
profile optionally further includes at least one physiological
metric. As described herein, any one or more of the metrics
above can optionally include short-term, medium-term, and/
or long-term metrics.



US 11,515,045 B1

15

At step 704, the runner profile is input into a trained
machine learning model. This disclosure contemplates that
the machine learning model is the machine learning model
100 shown in FIG. 1. In other words, the runner profile is the
input 110 to the machine learning model 100 of FIG. 1.
Additionally, this disclosure contemplates that the machine
learning model 100 is trained as described with regard to
FIG. 9. Referring again to FIG. 7, the runner profile input
into the trained machine learning model may be a vector or
tensor (see e.g., FIGS. 19A, 20A, 21A). The “features,”
which are input into the trained machine learning model, can
be extracted from the running-related data (see e.g., FIGS.
2A and 2B). Alternatively or additionally, the features can be
various metrics calculated from the running-related data (see
e.g., FIGS. 3-6). For example, FIGS. 8A-8D illustrate vari-
ous features of a runner profile that can be input into the
trained machine learning model in some implementations.
FIGS. 8A-8D include short-term, medium-term, and long-
term metrics for the week of Dec. 13, 2020 for an example
runner (see FIGS. 3-6). FIG. 8A includes volume, intensity,
and consistency metrics. FIG. 8B includes volume, intensity,
consistency, and variability metrics. FIG. 8C includes vol-
ume, intensity, consistency, and long run fraction metrics.
FIG. 8D includes volume, intensity, consistency, variability,
and long run fraction metrics. It should be understood that
FIGS. 8A-8D are provided only as example feature combi-
nations and that different metrics or combinations of metrics
can be input into the trained machine learning model.
Optionally, the features can be scaled before input into the
trained machine learning model. Feature scaling may
include, but is not limited to, normalizing, standardizing, or
converting to z-scores (e.g., number of standard deviations
from mean value) the raw data (e.g., data shown in FIGS.
2A-6, 8A-8D, and 11). This disclosure contemplates per-
forming data scaling using tools known in the art including,
but not limited to using a spreadsheet (e.g., MICROSOFT
EXCEL spreadsheets of Microsoft Corp. of Redmond,
Wash.), a computer program or application (e.g., MATLAB
platform of MathWorks Corp. of Natick, Mass.), or a pro-
gramming language (e.g., Python) library or toolkit.

At step 706, a risk of musculoskeletal injury is predicted,
using the trained machine learning model, based on the
runner profile. In other words, the risk of musculoskeletal
injury is the output 120 of the machine learning model 100
of FIG. 1. As described herein, the trained machine learning
model is configured to analyze input “features” and predict
risk of musculoskeletal injury based on the same. Referring
again to FIG. 7, in some implementations, the trained
machine learning model outputs a probability of musculo-
skeletal injury (e.g., a logistic regression). Alternatively, the
trained machine learning model classifies the runner profile
into a plurality of risk categories (e.g., logistic regression
classification). Risk categories can optionally include injury/
no injury, low risk/high risk, low risk/medium risk/high risk,
etc. classifications. As described herein, the musculoskeletal
injury is a running-related injury such as an injury affecting
the runner’s bones, joints, or soft tissue.

In some implementations, the runner profile input into the
model at step 704 includes metrics from the most-recent
training period. In other implementations, the runner profile
input into the model at step 704 includes metrics calculated
for the next (e.g., future) training period. A prospective
runner profile can be calculated, for example, based on the
runner’s training plan (volume, intensity, etc.) for an upcom-
ing training period. FIGS. 19A, 20A, and 21A are tables
illustrating example prospective runner profiles that are
input into a trained machine learning model. In either
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implementation, the prediction at step 706 allows the runner
to assess, adjust, tailor, etc. his training schedule to minimize
likelihood of, or in some cases avoid, suffering a musculo-
skeletal injury.

Referring now to FIG. 9, a flow diagram illustrating
example operations for training a machine learning model is
shown. This disclosure contemplates that the method of FIG.
9 can be performed using a computing device, e.g., com-
puting device 1000 shown in FIG. 10. At step 902, a dataset
including running-related data is received, for example, at
the computing device. Optionally, in some implementations,
the dataset is maintained (e.g., as a database or structured
data) in memory and/or a storage media controlled by and/or
accessible to the computing device. This disclosure contem-
plates that the dataset includes running-related data associ-
ated with a single runner (see Examples below and FIGS. 11
and 14). Alternatively, this disclosure contemplates that the
dataset includes respective running-related data associated
with a plurality of runners. Optionally, in such an imple-
mentation, the runners whose running-related data is
included in the dataset may be of a similar skill level and/or
training level. It should be understood that skill level can be
assessed by a runner’s actual or target race pace (e.g., 5
kilometer (km), 10 km, 15 km, half marathon, or marathon
pace), and training level can be assessed by a runner’s
current training volume, which may be measured by length
(e.g., miles) or duration (e.g., time) and/or intensity, which
may be measured by pace (e.g., seconds/mile) or speed (e.g.,
miles/hour). In other words, when the dataset includes
running-related data for multiple runners, it may be limited
to including those runners whose volume, intensity, consis-
tency, variability, etc. is similarly situated. This is because
injuries suffered by a recreational runner (e.g., relatively low
volume and intensity) may not be predictive of injuries
suffered by a competitive runner (e.g., relatively high vol-
ume and intensity) and vice versa. Aggregating running-
related data for a plurality of runners into a dataset increases
the size of the dataset, as well as the number of injured state
samples.

As described herein, the running-related data includes at
least one volume metric (see e.g., FIG. 3), at least one
intensity metric (see e.g., FIG. 3), at least one consistency
metric (see e.g., FIG. 4), at least one long run fraction metric
(see e.g., FIG. 6), at least one variability metric (see e.g.,
FIG. 5), or combinations thereof. Additionally, the running-
related data optionally further includes at least one dynamic
metric. Alternatively or additionally, the running-related
data optionally further includes at least one physiological
metric. It should be understood that one or more of the
metrics described above can include short-, medium-, and/or
long-term metrics as described herein. Additionally, the
dataset is a labeled dataset. In other words, the running-
related data includes a plurality of samples tagged with
respective running-related injury labels. In the Examples
below, the dataset includes running-related data for a single
runner (which is grouped by week) including: short-,
medium-, and long-term volume metrics; short-, medium-,
and long-term intensity metrics; short-, medium-, and long-
term consistency metrics; short-, medium-, and long-term
variability metrics; short-, medium-, and long-term long run
fraction metrics; and injury labels (see e.g., Injury Label
columns in FIG. 11 (raw data) and FIG. 14 (scaled data)). A
labeled sample includes a plurality of metrics (e.g., all or
combinations as described herein) and corresponding injury
label found in a row of the dataset (see FIG. 11 and FIG. 14).
The metrics in the dataset are the “features” and the labels
are the “target.” It should be understood that the above
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dataset is provided only as an example. This disclosure
contemplates that the dataset can include more or less
features than included in the example above.

At step 904, the dataset is augmented to include synthetic
data. It should be understood that running-related injuries,
while common (e.g., with an estimated 50% of runners
experiencing an injury each year), impact a runner on a
relatively infrequent basis. In other words, a given runner
typically has significantly more ‘healthy’ weeks during a
given year than ‘injury’ weeks (i.e., weeks where the runner
is not able to run). If this was not the case, then the given
runner could not improve performance through training.
Improved performance is the result of consistent training.
Thus, the dataset including running-related data (whether
including data for a single runner or multiple runners) is
expected to be unbalanced. This means that significantly
fewer target variable observations (i.e., injured state
samples) are expected to exist in the dataset than samples
from other classes (i.e., non-injured state samples). For
example, in the Examples below, the dataset for a single
runner before augmentation includes 3 injured state samples
and 201 non-injured state samples for the training period
between Jan. 1, 2018 and Nov. 28, 2021. Machine learning
algorithms are known to struggle with performance (e.g.,
inaccurate predictions) when trained with unbalanced data
due to disparity of classes (e.g., injury state & non-injury
state classes in the Examples). To address the problem of
disparity of classes in the dataset of running-related data, the
dataset is augmented to include synthetic data. Thus, the
augmented dataset further includes a plurality of synthetic
samples tagged with respective running-related injury
labels.

The step of augmenting the dataset includes creating the
plurality of synthetic samples from the running-related data.
A synthetic sample can be created by adjusting a value of a
metric associated with a sample tagged with an injury state
label (Injury Label=1). In the Examples below, each of
weeks Aug. 31, 2020, Apr. 22, 2019, and Jul. 2, 2018 is a
sample tagged with the injury state label (Injury Label=1).
Optionally, a synthetic sample is created by adjusting
respective values of a plurality of metrics associated with a
sample tagged with an injury state label. Additionally, the
metric or metrics that are adjusted may optionally be
selected randomly and/or the metrics or metrics may be
adjusted by a random amount, which increases the value of
such metric or metrics. As described herein, the metric
whose value is adjusted can be a volume metric, consistency
metric, intensity metric, long run fraction metric, variability
metric, dynamic metric, or physiological metric.

As described below, synthetic samples can be created in
a way that make sense for the specific type of data of
interest, i.e., running-related data in the present application.
Accordingly, the adjustment can optionally be applied to a
short-term metric or metrics when creating synthetic
samples. Optionally, the adjustment is applied only to the
short-term metric or metrics (i.e., the medium- and long-
term metrics are not altered when creating synthetic
samples). As noted above, values of short-term metrics for
the samples tagged with injury state labels, which are the
underrepresented observations in the dataset, are adjusted to
create synthetic samples. It should be understood that
increasing the values of short-term metrics (e.g., volume,
intensity, consistency, long run fraction, etc.) should not
change the runner’s injury state. In other words, if the runner
had increased volume, intensity, consistency, and/or long
run fraction during the training period in which an injury
occurred, then the runner would have experienced the same
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result—injury. Running more, farther and/or at higher inten-
sity is not expected to reduce injury risk. On the other hand,
if the runner had decreased volume, intensity, consistency,
and/or long run fraction during the training period in which
an injury occurred, then the runner may not have experi-
enced the same result because such decrease may have
allowed the runner to avoid injury. Therefore, an adjustment
which increases the value of one or more short-term metrics
associated with a sample tagged with an injury state label
can be applied to create a synthetic sample. It should be
appreciated that, for the intensity metric, increasing the
value of speed (e.g., miles per hour) corresponds to decreas-
ing the value of pace (e.g., minutes per mile), where either
speed or pace may serve as an intensity metric. The respec-
tive values for the medium- and long-term metrics associ-
ated with the same sample are not adjusted (i.e., these values
remain unchanged). Additionally, such adjustment applied
to a short-term metric may be random, e.g., resulting in a
random amount of increase in volume, intensity, consis-
tency, long run fraction, etc.

Optionally, knowledge-based limitations may be imposed
when creating the plurality of synthetic samples. It should be
understood that a given runner has limitations such as
physical, mental, fitness, physiological, practical, etc. limi-
tations. In particular, a given runner may not be capable of
more than doubling (e.g., 2 times) the value of the short-term
volume metric. For example, if a given runner typically
averages 40 miles per week (volume metric), then the given
runner may not be capable of running 80 or more miles per
week. This may be due to physical, mental, fitness, physi-
ological, and/or practical limitations. Thus, it would not
make sense to adjust the value of the short-term volume
metric more than a threshold amount. Accordingly, a knowl-
edge-based limitation (e.g., maximum 2 times value for
volume metric) can be imposed when creating synthetic
samples. It should be understood that the maximum 2 times
value limitation for the volume metric is provided only as an
example. This disclosure contemplates that the maximum
value adjustment limitation for volume metric may be less
than 2 times value (e.g., 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8,
1.9 times value) or more than 2 times value (e.g., 2.1, 2.2,
23, 24, 2.5, 2.6, 2.7, 2.8, 2.9 or more times value).
Additionally, similar to the volume metric, respective
knowledge-based limitations for adjustments of the values
of other metrics can be applied. As non-limiting examples,
knowledge-based limitations for the values of the long run
fraction metric, consistency metric, variability metric, and
intensity metric can optionally be maximum of 2 times
value, plus 2 (integer) days, plus 2 (integer) high-intensity
days, and 20% increase value, respectively. It should be
understood that the maximum adjustment limitations to the
values for the above metrics are provided only as examples.
This disclosure contemplates that the respective maximum
adjustment limitations may be less or more than those
provided as examples. Additionally, it should be understood
that the knowledge-based limitations for the adjustments
may be specific to an individual runner (i.e., personalized
limitations) or generalized for a plurality of runners.
Example knowledge-based limitations for adjustments to
values of the volume, long run fraction, consistency, vari-
ability, and intensity metrics are shown in the table of FIG.
12.

In the Examples below, a plurality of synthetic samples
are created from the three injured state samples (i.e., the
rows associated with short-term training periods for weeks
of Aug. 31, 2020, Apr. 22, 2019, and Jul. 2, 2018 in FIG. 11)
in the dataset. In this example, for each synthetic sample, the
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value of one of the short-term metrics is randomly selected
and then adjusted by a random amount to achieve an
increased value for the selected metric. It should be under-
stood that although the value associated with only one short
term metric is adjusted when creating each synthetic sample
in the Examples that the respective values associated with
multiple short-term metrics can be adjusted when creating a
synthetic sample. Pseudocode for creating synthetic samples
from the Aug. 31, 2020 injured state sample is shown in FIG.
13. It should be understood that similar pseudocode can be
used for creating synthetic samples from other injured state
samples (e.g., the weeks of Apr. 22, 2019 and Jul. 2, 2018
injured state samples). in FIG. 13, the Aug. 31, 2020 injured
state sample resides at row #32 in the data frame (“df3”), and
seventy (i.e., i=70) synthetic samples are created from the
Aug. 31, 2020 injured state sample using a ‘for’ loop. It
should be understood that the number of synthetic samples
created with the pseudocode is provided only as an example.
This disclosure contemplates creating any number of syn-
thetic samples needed to create a balanced dataset for model
training. As used herein, a balanced dataset includes data
samples with an approximately even distribution between
classes, e.g., about 50% injured state samples and 50%
non-injured state samples. It should be understood that the
50-50 distribution is provided only as an example. This
disclosure contemplates that the ratio of injured state
samples to non-injured state samples may be in a range
between about 40% to about 60%. Additionally, a random
non-integer, ‘n,” between 0 and 1 is generated to determine
which short-term metric’s value to adjust for each of the 70
instances of synthetic data created. This ensures that short-
term metrics for adjustment are selected randomly and
evenly when creating the synthetic samples. Short-term
volume, long run fraction, consistency, variability, and
intensity (pace) metrics reside in columns #7, 11, 1, 4, and
17, respectively, in the data frame (“df3”). ‘If;” ‘else if,” and
‘else’ statements are used to apply a random adjustment to
the value of the randomly-selected short-term metric for
each instance. Additionally, respective random non-integers
between 0 and 1 are generated and used for adjusting values
of volume and long run fraction metrics (e.g., by adding 1
to the randomly generated non-integer, which creates a
multiplier with value greater than 1 and less than 2), and
respective random integers between 0 and 2 are generated
and used for adjusting values of consistency and variability
metrics (e.g., by adding 1 to the randomly generated integer,
which creates an increased value of 1 or 2). The adjustment
for value of the intensity (pace) metric is based on randomly
generated non-integer, ‘n,” described above. The ‘if,” ‘else
if,” and “else’ statements ensure that this adjustment is a 20%
or less increase in intensity. It should be understood that the
pseudocode shown in FIG. 13 is provided only as an
example and that this disclosure contemplates creating syn-
thetic samples using other techniques. Further, the knowl-
edge-based limitations as shown in FIG. 12 are used to
control the maximum possible adjusted values for the short-
term metrics. This results in random adjusted values for the
short-term metrics being in the ranges shown in FIG. 12. It
should be understood that the knowledge-based limitations
shown in FIG. 12 are examples only.

Optionally, in some implementations, the dataset can be
further augmented by creating a plurality of synthetic
samples by adjusting a value of a metric associated with a
sample tagged with a non-injury state label (Injury
Label=0). It should be understood that data augmentation of
non-injury state samples can be used to increase the size of
the dataset. This can be accomplished in a similar manner as

20

25

30

35

40

45

50

55

60

65

20

described above. For example, a sample tagged with a
non-injury state label can be randomly selected and there-
after a value of a short-term metric associated with such
sample can be adjusted. As described above, the short-term
metric and/or amount of adjustment can be chosen ran-
domly. In contrast to the above techniques, however, the
adjustment used when creating a synthetic sample from a
sample tagged with a non-injury state label should decrease
the value of a short-term metric. This is for a similar reason
as outlined above, for example, decreasing the values of
short-term metrics (e.g., volume, intensity, consistency, long
run fraction, etc.) should not change the runner’s non-injury
state. In other words, if the runner had decreased volume,
intensity, consistency, and/or long run fraction during the
training period, then the runner is likely to experience the
same result—no injury. On the other hand, if the runner had
increased volume, intensity, consistency, and/or long run
fraction during the training period, then the runner may not
be guaranteed to experience the same result because such
increase increases injury risk. Therefore, an adjustment
which decreases the value of one or more short-term metrics
associated with a sample tagged with a non-injury state label
can be applied to create a synthetic sample. Additionally,
while knowledge-based limitations may be applied when
creating synthetic data from non-injury state samples, such
knowledge-based limitations have less practical value. In
particular, when dealing with decreasing values of short-
term metrics (e.g., volume, consistency, intensity, long run
fraction), there are fewer practical limitations at play. Run-
ners periodically decrease (and sometimes drastically
decrease) volume, intensity, etc. of running for various
reasons and do so without worrying about increased injury
risk or other limitation.

Optionally, in some implementations, running-related
data in the dataset is preprocessed. Preprocessing can help
avoid garbage in, garbage out issues. For example, prepro-
cessing can include, but is not limited to, data cleaning (e.g.,
removing unwanted feature(s) and/or ‘bad’ data), data edit-
ing, data reduction, and/or feature scaling. Feature scaling
operations include normalization, where feature values are
rescaled to a range of [0, 1], or standardization, where
feature values are rescaled to have a mean of 0 and standard
deviation of 1. Standardization is sometimes referred to as
z-score. Data preprocessing is well known in the art and
therefore not described further herein. In the Examples
below, the raw data in the augmented dataset is cleaned and
scaled (FIG. 14) before training the machine learning model
and also before inputting a feature tensor into a trained
model.

Referring again to FIG. 9, a machine learning model is
trained using the augmented dataset at step 906. Optionally,
the machine learning model is a deep learning model. For
example, the deep learning model is optionally a feedfor-
ward ANN, which is sometimes referred to as a multilayer
perceptron (MLP). It should be understood that ANNs are
provided only as an example machine learning model. This
disclosure contemplates training other machine learning
models including supervised or semi-supervised machine
learning models. As described herein, the step of training the
machine learning model includes minimizing or maximizing
an objective function. Optionally, the objective function is a
cost function such as an error between the machine learning
model’s running-related injury risk prediction and ground
truth. Cost functions include, but are not limited to, mean
square error, L1 loss (absolute deviations) or .2 loss (least
square errors). This disclosure contemplates using any
objective function known in the art. FIG. 17 is a graph
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illustrating model loss for an example machine learning
model during model training. The graph illustrates both
training loss and testing loss.

As described herein, the trained machine learning model
is configured for predicting risk of running-related injury.
Thus, the target of training is the runner’s injury state—
injured or non-injured states. For example, in some imple-
mentations, the trained machine learning model is config-
ured to predict risk of running-related injury by providing a
classification into one of a plurality of risk categories. In
other implementations, the trained machine learning model
is configured to predict risk of running-related injury by
providing a probability of musculoskeletal injury. Option-
ally, a target of training in another implementation may be
the type of musculoskeletal injury (classification) and/or
probability thereof.

Optionally, performance of the machine learning model
trained as described with respect to FIG. 9 is evaluated, for
example, using an accuracy measure such as an F-score or
area under the receiver operator characteristic curve (AUC).
F-score is a measure of a model’s accuracy that is created
from the precision and recall. Precision is a ratio of true
positive results to all predicted positive results, which
includes true and false positive results. Recall is a ratio of
true positive results to all actual positive samples, which
includes true positive and false negative results. The receiver
operator characteristic (ROC) curve is a plot of true positive
rate versus false positive rate over the range of classification
thresholds. AUC is the area under ROC curve and provides
an aggregate measure of performance across all possible
classification thresholds, i.e., a measure of the model’s
ability to distinguish between classes (e.g., injured state/
non-injured state in the Examples). Higher AUC is associ-
ated with better performance. A perfect predictor has AUC
of 1, while a random predictor has AUC of 0.5. F-score and
AUC are known in the art and therefore not described in
further detail herein. It should be understood that F-score
and AUC are provided only as example model accuracy
measures. This disclosure contemplates using other mea-
sures to evaluate the trained model’s accuracy. FIG. 18 is a
graph illustrating AUC for an example machine learning
model during model training. The graph illustrates both
training AUC and testing AUC.

It should be appreciated that the logical operations
described herein with respect to the various figures may be
implemented (1) as a sequence of computer implemented
acts or program modules (i.e., software) running on a
computing device (e.g., the computing device described in
FIG. 10), (2) as interconnected machine logic circuits or
circuit modules (i.e., hardware) within the computing device
and/or (3) a combination of software and hardware of the
computing device. Thus, the logical operations discussed
herein are not limited to any specific combination of hard-
ware and software. The implementation is a matter of choice
dependent on the performance and other requirements of the
computing device. Accordingly, the logical operations
described herein are referred to variously as operations,
structural devices, acts, or modules. These operations, struc-
tural devices, acts and modules may be implemented in
software, in firmware, in special purpose digital logic, and
any combination thereof. It should also be appreciated that
more or fewer operations may be performed than shown in
the figures and described herein. These operations may also
be performed in a different order than those described
herein.

Referring to FIG. 10, an example computing device 1000
upon which the methods described herein may be imple-
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mented is illustrated. It should be understood that the
example computing device 1000 is only one example of a
suitable computing environment upon which the methods
described herein may be implemented. Optionally, the com-
puting device 1000 can be a well-known computing system
including, but not limited to, personal computers, servers,
handheld or laptop devices, multiprocessor systems, micro-
processor-based systems, network personal computers
(PCs), minicomputers, mainframe computers, embedded
systems, and/or distributed computing environments includ-
ing a plurality of any of the above systems or devices.
Distributed computing environments enable remote comput-
ing devices, which are connected to a communication net-
work or other data transmission medium, to perform various
tasks. In the distributed computing environment, the pro-
gram modules, applications, and other data may be stored on
local and/or remote computer storage media.

In its most basic configuration, computing device 1000
typically includes at least one processing unit 1006 and
system memory 1004. Depending on the exact configuration
and type of computing device, system memory 1004 may be
volatile (such as random access memory (RAM)), non-
volatile (such as read-only memory (ROM), flash memory,
etc.), or some combination of the two. This most basic
configuration is illustrated in FIG. 10 by dashed line 1002.
The processing unit 1006 may be a standard programmable
processor that performs arithmetic and logic operations
necessary for operation of the computing device 1000. The
computing device 1000 may also include a bus or other
communication mechanism for communicating information
among various components of the computing device 1000.

Computing device 1000 may have additional features/
functionality. For example, computing device 1000 may
include additional storage such as removable storage 1008
and non-removable storage 1010 including, but not limited
to, magnetic or optical disks or tapes. Computing device
1000 may also contain network connection(s) 1016 that
allow the device to communicate with other devices. Com-
puting device 1000 may also have input device(s) 1014 such
as a keyboard, mouse, touch screen, etc. Output device(s)
1012 such as a display, speakers, printer, etc. may also be
included. The additional devices may be connected to the
bus in order to facilitate communication of data among the
components of the computing device 1000. All these devices
are well known in the art and need not be discussed at length
here.

The processing unit 1006 may be configured to execute
program code encoded in tangible, computer-readable
media. Tangible, computer-readable media refers to any
media that is capable of providing data that causes the
computing device 1000 (i.e., a machine) to operate in a
particular fashion. Various computer-readable media may be
utilized to provide instructions to the processing unit 1006
for execution. Example tangible, computer-readable media
may include, but is not limited to, volatile media, non-
volatile media, removable media and non-removable media
implemented in any method or technology for storage of
information such as computer readable instructions, data
structures, program modules or other data. System memory
1004, removable storage 1008, and non-removable storage
1010 are all examples of tangible, computer storage media.
Example tangible, computer-readable recording media
include, but are not limited to, an integrated circuit (e.g.,
field-programmable gate array or application-specific I1C), a
hard disk, an optical disk, a magneto-optical disk, a floppy
disk, a magnetic tape, a holographic storage medium, a
solid-state device, RAM, ROM, electrically erasable pro-
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gram read-only memory (EEPROM), flash memory or other
memory technology, CD-ROM, digital versatile disks
(DVD) or other optical storage, magnetic cassettes, mag-
netic tape, magnetic disk storage or other magnetic storage
devices.

In an example implementation, the processing unit 1006
may execute program code stored in the system memory
1004. For example, the bus may carry data to the system
memory 1004, from which the processing unit 1006 receives
and executes instructions. The data received by the system
memory 1004 may optionally be stored on the removable
storage 1008 or the non-removable storage 1010 before or
after execution by the processing unit 1006.

It should be understood that the various techniques
described herein may be implemented in connection with
hardware or software or, where appropriate, with a combi-
nation thereof. Thus, the methods and apparatuses of the
presently disclosed subject matter, or certain aspects or
portions thereof, may take the form of program code (i.e.,
instructions) embodied in tangible media, such as floppy
diskettes, CD-ROMs, hard drives, or any other machine-
readable storage medium wherein, when the program code
is loaded into and executed by a machine, such as a
computing device, the machine becomes an apparatus for
practicing the presently disclosed subject matter. In the case
of program code execution on programmable computers, the
computing device generally includes a processor, a storage
medium readable by the processor (including volatile and
non-volatile memory and/or storage elements), at least one
input device, and at least one output device. One or more
programs may implement or utilize the processes described
in connection with the presently disclosed subject matter,
e.g., through the use of an application programming inter-
face (API), reusable controls, or the like. Such programs
may be implemented in a high level procedural or object-
oriented programming language to communicate with a
computer system. However, the program(s) can be imple-
mented in assembly or machine language, if desired. In any
case, the language may be a compiled or interpreted lan-
guage and it may be combined with hardware implementa-
tions.

EXAMPLES

The following examples are put forth so as to provide
those of ordinary skill in the art with a complete disclosure
and description of how the compounds, compositions,
articles, devices and/or methods claimed herein are made
and evaluated, and are intended to be purely exemplary and
are not intended to limit the disclosure. Efforts have been
made to ensure accuracy with respect to numbers (e.g.,
amounts, values, etc.), but some errors and deviations should
be accounted for.

Example 1

In the examples below, a labeled dataset including run-
ning-related data for one individual runner is created. The
individual runner is the inventor of the present application.
The labeled dataset was collected and used to demonstrate
the feasibility of applying machine learning to predict risk of
running-related injury. The labeled dataset contains the
individual’s running-related data downloaded from the
GARMIN CONNECT website of Garmin International of
Olathe, Kans. in XLS file format. It should be understood
that XL.S format is only an example and that data may be
downloaded in other file formats including, but not limited
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to, CSV file format. In addition to data downloaded from the
GARMIN CONNECT website, each sample (i.e., a week of
data residing in a row of FIG. 11) was tagged with a label—0
for non-injury state and 1 for injury state. Thus, the dataset
is a labeled dataset. The dataset includes running-related
data that is grouped by week for the period between Jan. 1,
2018 and Nov. 28, 2022. Each week (i.e., sample) is tagged
with an injury/non-injury label. A labeled sample thus
includes a plurality of metrics and corresponding label
associated with a given week.

FIG. 11 is an excerpt from a labeled dataset. In FIG. 11
(and others in the Examples), the following metrics appear:
short-term consistency (STCon), medium-term consistency
(MTCon), long-term consistency (LTCon), short-term vari-
ability (STVar), medium-term variability (MT Var), long-
term variability (LTVar), short-term volume (STVol),
medium-term volume (MTVol), long-term volume (LT Vol),
maximum volume (Max Vol), short-term long run fraction
(STLrf), medium-term long run fraction (MTLrf), long-term
long run fraction (LTLrf), short-term duration (STDur),
medium-term duration (MTDur), long-term duration (LT-
Dur), short-term intensity (STPac), medium-term intensity
(MTPac), long-term intensity (LTPac). These metrics are
discussed in detail above. In the Examples, the short-term
period is a 7 day period, the medium-term period is a 3 week
period, and the long-term period is a 12 week period.
Additionally, in the Examples, the volume metric used is
measured by distance (miles), but it should be understood
that it can alternatively be measured by duration (time).
Additionally, in the Examples, the intensity metric used is
measured in pace (seconds/mile), but it should be under-
stood that it can alternatively be measured by speed (miles
per hour). As described herein, one or more of these metrics
serve as features for machine learning. Further, in FIG. 11
(and others in the Examples), the following labels appears:
injury state (1) and non-injury state (0). As described herein,
the labels serve as the target for machine learning.

The labeled dataset includes 204 samples, which includes
201 samples tagged as non-injury class (Injury Label=0) and
3 samples tagged as injury class (Injury Label=1). The 3
samples tagged as injury class are the weeks of Aug. 31,
2020; Apr. 22, 2019; and Jul. 2, 2018, which represent the
weeks of injury occurrence. Each of these samples appears
in FIG. 11. The Aug. 31, 2020 injury was to the right calf
(possible soleus muscle strain) and resulted in the individual
runner taking 4 consecutive days off (i.e., no running) during
the following week of Sep. 7, 2020 (see FIG. 2A, Sep. 9-12,
2020). The Apr. 22, 2019 injury was to the right knee
(possible patellar tendonitis) and resulted in the individual
runner taking a substantial amount of time (i.e., no running)
off during the following eight weeks. The Jul. 2, 2018 injury
was to the right groin (possible groin strain) and resulted in
the individual runner taking 4 consecutive days off (i.e., no
running) spanning the weeks of July 2 and 9, 2018.

Example 2

The labeled dataset of Example 1 is unbalanced because
samples in the injury class are underrepresented. For
example, there are only 3 samples tagged with the injury
state label (1), while 201 samples are tagged with the
non-injury state label (0). Therefore, the labeled dataset was
augmented as described herein. In particular, a plurality of
synthetic samples were created based on 3 samples tagged as
injury class (i.e., the samples for weeks of Aug. 31, 2020;
Apr. 22, 2019; and Jul. 2, 2018), and such synthetic samples
were appended to the labeled dataset. 70 synthetic samples
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were created for each of the samples for weeks of Aug. 31,
2020; Apr. 22, 2019; and Jul. 2, 2018, which resulted in 210
synthetic samples. Thus, the augmented dataset was more
balanced having 201 real samples in the non-injury class
(Injury Label=0) and 213 actual and synthetic samples in the
injury class (Injury Label=1). Each synthetic sample was
created by randomly adjusting the value of one short-term
metric associated with an injury-labeled sample. Addition-
ally, knowledge-based limitations (see FIG. 12) were
applied to the adjusted value of these short-term metrics.
Pseudocode used to create a synthetic sample is shown in
FIG. 13.

Example 3

After augmenting the dataset, the metrics were scaled.
Scaling was accomplished using the PANDAS tool kit in the
Python programming language. Both the Python program-
ming language and the PANDAS tool kit, which is a data
analysis tool, are well known in the art and therefore not
described herein. In particular, the labeled dataset of
Example 1 (FIG. 11) and augmented dataset of Example 2
were read into a data frame using the Python programming
language. A mean and standard deviation for each metric in
the labeled dataset of Example 1 was then calculated.
Calculating mean and standard deviation from the labeled
dataset of Example 1 (as opposed to the augmented dataset
of Example 2) prevented skewing such calculations based on
metric values of the synthetic samples, which were created
from only 3 real samples in the labeled dataset. Such mean
and standard deviation for each metric were then used to
scale the metrics in the augmented dataset:

Actual Metric Value — Mean Metric Value

Scaled Metric Value =
caled Metric Value Standard Deviation Metric Value

The labels (i.e., Injury Label) were left alone and not
rescaled. FIG. 14 is an excerpt from an example augmented
labeled dataset after data scaling. FIG. 14 shows samples for
5 weeks from Oct. 25, 2021 through Nov. 22, 2021.

Example 4

The scaled, augmented dataset of Example 3 was used to
train a machine learning model. Various ANNs were trained
using the scaled, augmented dataset. Model training was
accomplished using the KERAS tool kit in the Python
programming language. Both the Python programming lan-
guage and the KERAS tool kit, which is a deep learning
framework, are well known in the art and therefore not
described herein. In particular, the scaled, augmented dataset
was read into a data frame using the Python programming
language. As described in Examples 2 and 3, the scaled,
augmented dataset includes 201 real samples in the non-
injury class and 213 real and synthetic samples in the injury
class. In the Examples, 80% of the scaled, augmented
dataset serves as the training dataset and 20% of the scaled,
augmented dataset serves as the testing dataset. Train/test
splitting of the scaled, augmented dataset and model training
is accomplished using functions in the KERAS tool kit. This
includes selecting model architecture and hyperparameters.

As noted above, various ANNs were trained using the
scaled, augmented dataset of Example 3 and evaluated for
their ability to distinguish between injury/non-injury classes
using AUC as the evaluation metric. As described above,
AUC provides an aggregate measure of performance across
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all possible classification thresholds, i.e., a measure of the
model’s ability to distinguish between the injured state and
non-injured state classes. Higher AUC is associated with
better performance. FIG. 15 is a table illustrating the AUC
analysis for various trained ANNSs.

In some implementations, the following 12 metrics serve
as model features: short-, medium-, and long-term volume
metrics; short-, medium-, and long-term intensity metrics;
short-, medium-, and long-term consistency metrics; and
short-, medium-, and long-term long run fraction metrics.
The model target is the Injury Label. ANNs with different
architectures were tested, including ANNs with 1 input
layer, 1 hidden layer or 2 hidden layers, and 1 output layer.
As an example, an ANN with 1 input layer (12 nodes), 1
hidden layer (4 nodes), and 1 output layer (1 node) is
referenced in FIG. 15 as an “ANN with 12/4/1 nodes per
layer,” and an ANN with 1 input layer (12 nodes), 2 hidden
layers (4 nodes, 2 nodes), and 1 output layer (1 node) is
referenced in FIG. 15 as an “ANN with 12/4/2/1 nodes per
layer.” As shown in FIG. 15, the trained ANNSs receiving 12
features as input perform very well with AUC equal to 1 or
very near equal to 1.

In some implementations, the following 9 metrics serve as
model features: short-, medium-, and long-term volume
metrics; short-, medium-, and long-term intensity metrics;
and short-, medium-, and long-term consistency metrics.
The model target is the Injury Label. ANNs with different
architectures were tested, including ANNs with 1 input
layer, 1 hidden layer or 2 hidden layers, and 1 output layer.
As an example, an ANN with 1 input layer (9 nodes), 1
hidden layer (3 nodes), and 1 output layer (1 node) is
referenced in FIG. 15 as an “ANN with 9/3/1 nodes per
layer,” and an ANN with 1 input layer (9 nodes), 2 hidden
layers (3 nodes, 2 nodes), and 1 output layer (1 node) is
referenced in FIG. 15 as an “ANN with 9/3/2/1 nodes per
layer.” As shown in FIG. 15, the trained ANNs receiving 9
features as input perform well, but their accuracy is less than
that of the trained ANNs receiving 12 features as input.
Therefore, including short-, medium-, and long-term long
run fraction metrics as model features has advantages that
improve ANN performance.

In some implementations, the following 6 metrics serve as
model features: short-, medium-, and long-term volume
metrics; and short-, medium-, and long-term intensity met-
rics. The model target is the Injury Label. ANNs with
different architectures were tested, including ANNs with 1
input layer, 1 hidden layer or 2 hidden layers, and 1 output
layer. As an example, an ANN with 1 input layer (6 nodes),
1 hidden layer (2 nodes), and 1 output layer (1 node) is
referenced in FIG. 15 as an “ANN with 6/2/1 nodes per
layer,” and an ANN with 1 input layer (6 nodes), 2 hidden
layers (6 nodes, 3 nodes), and 1 output layer (1 node) is
referenced in FIG. 15 as an “ANN with 6/6/3/1 nodes per
layer.” As shown in FIG. 15, the trained ANNs receiving 6
features as input are less accurate than the trained ANNs
receiving 12 or 9 features as input. In fact, the 6/4/2/1 ANN
is unable to distinguish between classes with accuracy better
than random guessing. Therefore, including short-,
medium-, and long-term long run fraction and consistency
metrics as model features has advantages that improve
performance. Without long run fraction and/or consistency
metrics, the trained ANNs do not appear to offer improve-
ment over conventional techniques for predicting running-
related injury.

Example 5

Based on the evaluations described in Example 4, an ANN
architecture for inference mode was chosen—an ANN with
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1 input layer (12 nodes), 2 hidden layers (4 nodes, 2 nodes),
and 1 output layer (1 node) as shown in FIG. 16. The trained
ANN was saved to a file in a hierarchal data format (HDF)
file format. The ANN is configured to distinguish between
injured state and non-injured state classes based on the
following features: short-, medium-, and long-term volume
metrics; short-, medium-, and long-term intensity metrics;
short-, medium-, and long-term consistency metrics; and
short-, medium-, and long-term long run fraction metrics.
This particular ANN architecture was chosen based on its
ability to perfectly distinguish between injured state and
non-injured state classes (i.e., AUC=1 for both training and
testing), as well as its less complex architecture (including
only 65 trainable parameters) as compared to other 12-input
node ANN architectures with AUC=1. Hyperparameters for
the chosen ANN include learning rate=0.001, epochs=200,
and batch size=16 as shown in FIG. 16. It should be
understood that hyperparameters may be optimized to
improve performance, which was not necessary for the
chosen ANN. FIG. 17 is a graph illustrating model loss for
the ANN of FIG. 16 during training. FIG. 18 is a graph
illustrating AUC for the ANN of FIG. 16 during training.

Example 6

The trained ANN of Example 5 and described in FIG. 16
was deployed by the individual runner in inference mode
beginning in January 2022. Model deployment was accom-
plished using the PANDAS, NUMPY, and KERAS tool kits
in the Python programming language, which are all well
known in the art. In particular, the trained ANN (i.e., HDF
file format) and a runner profile (see FIGS. 19A, 20A, 20B
in CSV file format) were uploaded using the Python pro-
gramming language. The runner profile includes the follow-
ing features: short-, medium-, and long-term volume met-
rics; short-, medium-, and long-term intensity metrics;
short-, medium-, and long-term consistency metrics; and
short-, medium-, and long-term long run fraction metrics.
The short-term metrics are prospective, i.e., based on the
individual runner’s training plan for the next week. In other
words, the respective values for the short-term volume
metric, short-term consistency metric, short-term intensity
metric, and short-term long run fraction metric are based on
the individual runner’s expectations for the next (future)
week. Medium- and long-term metrics are calculated
accordingly with the prospective data. In the two examples
below, the individual runner provides the following
expected training information for the upcoming week: vol-
ume in miles, long run distance in miles, pace in seconds,
and number of training days. Long run fraction is calculated
as a ratio of long run distance and volume. Thereafter, the
features (12 total), which are scaled as described herein, are
input as a tensor into the trained ANN, and the trained ANN
outputs a prediction, which classifies the input tensor into
one of two classes: the injured state or non-injured state.

In a first example, the trained ANN was used to predict the
individual runner’s injury state based on the training plan for
the upcoming week (future) of Feb. 21, 2022. The individual
runner deployed the trained ANN for this purpose on Feb.
20, 2022 using the following prospective data for short-term
metrics: 6 training days (STCon), 57 miles total volume
(STVol), 0.2632 long run fraction (STLrf) which is based on
15 mile long run, and 468 second/mile (T77:50 min/mi)
average pace (STPac). Medium- and long-term metrics were
calculated using the prospective and historical data (e.g.,
resulting in 3 and 12 week averages). This is shown in FIG.
19A. The raw data is in one column, and the scaled data in
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another in FIG. 19A. The tensor input into the trained ANN
is the “scaled data” column in FIG. 19A. The trained ANN
output was 0, which corresponds to the non-injured state
class, as shown in FIG. 19B. Therefore, the individual
runner proceeded according to the training plan for the week
of Feb. 21, 2022 and did not experience an injury.

In a second example, the trained ANN was used to predict
the individual runner’s injury state based on the training plan
for the upcoming week (future) of Feb. 28, 2022. In this
example, the training plan was adjusted in response to
predicted injury. In particular, the individual runner
deployed the trained ANN on Feb. 27, 2022 using the
following prospective data for short-term metrics: 6 training
days (STCon), 60 miles total volume (STVol), 0.3083 long
run fraction (STLrf) which is based on 18.5 mile long run,
and 479 second/mile (78:00 min/mi) average pace (STPac).
Medium- and long-term metrics were calculated using the
prospective and historical data (e.g., resulting in 3 and 12
week averages). This is shown in FIG. 20A. The raw data is
in one column, and the scaled data in another in FIG. 20A.
The tensor input into the trained ANN is the “scaled data”
column in FIG. 20A. The trained ANN output was 1, which
corresponds to the injured state class, as shown in FIG. 20B.
The individual runner therefore adjusted the training plan
using the following prospective data for short-term metrics:
5 training days (STCon), 47.5 miles total volume (STVol),
0.3895 long run fraction (STLrf) which is based on 18.5 mile
long run, and 479 second/mile (78:00 min/mi) average pace
(STPac). In other words, the number of training days and
total volume were adjusted. Medium- and long-term metrics
were calculated using the prospective and historical data
(e.g., resulting in 3 and 12 week averages). This is shown in
FIG. 21A. The raw data is in one column, and the scaled data
in another in FIG. 21A. The tensor input into the trained
ANN is the “scaled data” column in FIG. 21A. The trained
ANN was then deployed again to predict the individual
runner’s injury state based on the alternative training plan.
The trained ANN output was 0, which corresponds to the
non-injured state class, as shown in FIG. 21B. Therefore, the
individual runner proceeded according to the alternative
training plan (i.e., with fewer training days and less volume)
for the week of Feb. 28, 2022 and did not experience an
injury.

Accordingly, the individual runner deployed the trained
ANN based on his training plans to avoid and/or reduce the
risk of musculoskeletal injury. The examples demonstrate
the feasibility of using deep learning models to predict
running-related injury, as the runner did not experience
injury (despite predicted risk thereof for the week of Feb. 28,
2022). As described herein, the ANN was trained to accu-
rately distinguish between samples associated with injured
and non-injured states. The datasets described in the
Examples, which were used to demonstrate feasibility, are
relatively small size. This disclosure contemplates that the
techniques described herein can be applied to create a larger
data set. Larger datasets can be compiled by collecting
running-related data from an individual runner over a longer
period of time. Alternatively, larger datasets can be compiled
by aggregating running-related data for a plurality of run-
ners. Hither case will result in more injured state observa-
tions because of the prevalence of injuries. Alternatively or
additionally, data augmentation can be used to increase the
size of a dataset. As described herein, injury state samples
can be altered and appended to the dataset and optionally
non-injury state samples can be altered and appended to the
dataset. Data augmentation can also be used to balance the
dataset.
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Although the subject matter has been described in lan-
guage specific to structural features and/or methodological
acts, it is to be understood that the subject matter defined in
the appended claims is not necessarily limited to the specific
features or acts described above. Rather, the specific features
and acts described above are disclosed as example forms of
implementing the claims.

What is claimed:
1. A computer-implemented method for training a
machine learning model, comprising:
collecting a dataset from an electronic runner’s log, the
dataset comprising running-related data, wherein the
running-related data comprises a plurality of samples
tagged with respective running-related injury labels;

creating a plurality of synthetic samples from the running-
related data, wherein the plurality of synthetic samples
are tagged with respective running-related injury
labels;
creating an augmented dataset comprising the plurality of
samples and the plurality of synthetic samples; and

training a supervised machine learning model using the
augmented dataset, wherein training the supervised
machine learning model using the augmented dataset is
configured to improve performance of the trained
supervised machine learning model, wherein the
trained supervised machine learning model is config-
ured to predict risk of running-related injury, and
wherein the running-related data comprises at least one
volume metric, at least one intensity metric, at least one
consistency metric, or at least one long run fraction
metric.

2. The computer-implemented method of claim 1,
wherein a synthetic sample is created by adjusting a value of
at least one metric associated with a sample tagged with an
injury state label.

3. The computer-implemented method of claim 2,
wherein the synthetic sample is created by imposing a
knowledge-based limitation on the adjusted value of the at
least one metric associated with the sample tagged with the
injury state label.

4. The computer-implemented method of claim 1,
wherein the running-related data further comprises at least
one variability metric.

5. The computer-implemented method of claim 1,
wherein the running-related data further comprises at least
one dynamic metric.

6. The computer-implemented method of claim 1,
wherein the running-related data further comprises at least
one physiological metric.

7. The computer-implemented method of claim 1,
wherein the running-related data comprises the at least one
volume metric, the at least one intensity metric, the at least
one consistency metric, and the at least one long run fraction
metric.

8. The computer-implemented method of claim 1,
wherein the at least one volume metric comprises one or
more of a short-term volume metric, a medium-term volume
metric, and a long-term volume metric.

9. The computer-implemented method of claim 1,
wherein the at least one intensity metric comprises one or
more of a short-term intensity metric, a medium-term inten-
sity metric, and a long-term intensity metric.

10. The computer-implemented method of claim 1,
wherein the at least one consistency metric comprises one or
more of a short-term consistency metric, a medium-term
consistency metric, and a long-term consistency metric.
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11. The computer-implemented method of claim 1,
wherein the at least one long run fraction metric comprises
one or more of a short-term long run fraction metric, a
medium-term long run fraction metric, and a long-term long
run fraction metric.

12. The computer-implemented method of claim 4,
wherein the at least one variability metric comprises one or
more of a short-term variability metric, a medium-term
variability metric, and a long-term variability metric.

13. The computer-implemented method of claim 1,
wherein the dataset comprises respective running-related
data associated with a plurality of runners.

14. The computer-implemented method of claim 1,
wherein the dataset comprises running-related data associ-
ated with a single runner.

15. The computer-implemented method of claim 1,
wherein the trained supervised machine learning model is
configured to predict risk of running-related injury by clas-
sifying a runner profile into one of a plurality of risk
categories.

16. The computer-implemented method of claim 1,
wherein the trained supervised machine learning model is
configured to predict risk of running-related injury by pro-
viding a probability of musculoskeletal injury for a runner
profile.

17. The computer-implemented method of claim 1,
wherein training the supervised machine learning model
comprises minimizing or maximizing an objective function.

18. The computer-implemented method of claim 17,
wherein the objective function is an error between the
supervised machine learning model’s running-related injury
risk prediction and ground truth.

19. The computer-implemented method of claim 1, fur-
ther comprising evaluating performance of the trained super-
vised machine learning model using an accuracy measure.

20. The computer-implemented method of claim 1, fur-
ther comprising preprocessing the dataset or the augmented
dataset.

21. The computer-implemented method of claim 20,
wherein preprocessing comprises data scaling.

22. The computer-implemented method of claim 1,
wherein the supervised machine learning model is a deep
learning model.

23. The computer-implemented method of claim 22,
wherein the deep learning model is an artificial neural
network.

24. A computer-implemented method for predicting risk
of running-related injury, comprising:

training a supervised machine learning model according

to claim 1;

inputting a runner profile into the trained supervised

machine learning model; and

predicting, using the trained supervised machine learning

model, a risk of musculoskeletal injury, wherein the
risk of musculoskeletal injury is predicted by the
trained supervised machine learning model based on
the runner profile.

25. The computer-implemented method of claim 24,
wherein the runner profile comprises at least one volume
metric, at least one intensity metric, at least one consistency
metric, at least one long run fraction metric, at least one
variability metric, at least one dynamic metric, or at least one
physiological metric.

26. The computer-implemented method of claim 24,
wherein the runner profile comprises at least one volume
metric, at least one intensity metric, at least one consistency
metric, and at least one long run fraction metric.
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27. The computer-implemented method of claim 24,
wherein the risk of musculoskeletal injury is a classification
into one of a plurality of risk categories.

28. The computer-implemented method of claim 24,
wherein the risk of musculoskeletal injury is a probability of 5
musculoskeletal injury.

29. The computer-implemented method of claim 24,
wherein the supervised machine learning model is a deep
learning model.
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