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An example method for predicting risk of running-related
injury, includes: retrieving a first dataset including running-
related data; comparing a first distribution of the first dataset
to a second distribution of a second dataset including
running-related data; based on the comparison, selecting one
of the first dataset or the second dataset; scaling a runner
profile from the first dataset based on the selected one of the
first dataset or the second dataset; inputting, into a trained
machine learning model, the runner profile; and predicting,
using the trained machine learning model, a risk of a
musculoskeletal injury based on the runner profile.

Retrieving an inference dataset comprising running-related data, the
running-related data comprising a plurality of metrics for each of a
plurality of training periods
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Scaling a runner profile from the inference dataset based on at least
one characteristic of the inference dataset, wherein the runner profile
comprises the plurality of metrics for a single training period
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Predicting, using the trained machine learning model, a risk of a
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Input Layer 12 nodes
Hidden Layer (1) 12 nodes
Output Layer 1 node
Learning Rate 0.001
Epochs 200

Batch Size 16
Train/Test Split 80% / 20%

FIG. 6
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MACHINE LEARNING-BASED METHODS
AND SYSTEMS FOR PREDICTING
RUNNING-RELATED INJURIES

CROSS REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims priority to U.S. provisional
application No. 63/532,273, filed Aug. 11, 2023, titled
“MACHINE LEARNING-BASED METHODS AND SYS-
TEMS FOR PREDICTING RUNNING-RELATED INJU-
RIES,” the disclosure of which is incorporated herein by
reference in its entirety.

BACKGROUND

[0002] Running is a popular activity. For example, in the
United States, millions of people maintain fitness by running
on a regular basis. Running, however, poses a high risk of
injury due to the repetitive stress on the runner’s body. By
some estimates, more than 50 percent of runners experience
an injury each year. During time off, runners lose fitness,
miss opportunities, and experience adverse physical and
mental health effects. Unfortunately, preventing injuries is
an extremely difficult task. In fact, conventional injury
preventive measures are often either subjective (e.g., listen
to your body) or rules of thumb (e.g., avoid a week-to-week
mileage increase of greater than 10%). These conventional
prevention methods are also inaccurate. Moreover, research-
ers have not yet uncovered any predictive characteristics
(e.g., strength, flexibility, biomechanics, injury history, etc.)
to identify which runners are likely to get injured and/or why
so. See Hutchinson, Alex, The Elusive Art of Predicting
Injuries, Outside Online.com, published May 7, 2021,
https://www.outsideonline.com/2423442/running-injuries-
prediction-research (accessed May 8, 2021). There is there-
fore a need in the art for tools to predict running-related
injuries.

SUMMARY

[0003] In some aspects, the techniques described herein
relate to a method for predicting risk of running-related
injury, including: retrieving a first dataset including running-
related data; comparing a first distribution of the first dataset
to a second distribution of a second dataset including
running-related data; based on the comparison, selecting one
of the first dataset or the second dataset; scaling a runner
profile from the first dataset based on the selected one of the
first dataset or the second dataset; inputting, into a trained
machine learning model, the runner profile; and predicting,
using the trained machine learning model, a risk of a
musculoskeletal injury based on the runner profile.

[0004] In some aspects, the step of comparing the first
distribution of the first dataset to the second distribution of
the second dataset includes using a statistical technique. In
some aspects, the statistical technique optionally includes:
calculating respective summary statistics for each of the first
dataset and the second dataset; and comparing the respective
summary statistics of the first dataset to the respective
summary statistics of the second dataset. In some aspects,
the statistical technique optionally includes a statistical test
that quantifies a similarity of the first dataset and the second
dataset.

[0005] In some aspects, the step of comparing the first
distribution of the first dataset to the second distribution of
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the second dataset includes using a visualization technique.
In some aspects, the visualization technique optionally
includes: creating respective histograms for each of the first
dataset and the second dataset; plotting the respective his-
tograms for each of the first dataset and the second dataset;
and comparing the respective histogram for the first dataset
to the respective histogram for the second dataset.

[0006] In some aspects, the step of scaling the runner
profile from the first dataset based on the selected one of the
first dataset or the second dataset includes standardizing the
runner profile from the first dataset based on at least one
characteristic of the selected one of the first dataset or the
second dataset.

[0007] In some aspects, the step of scaling the runner
profile from the first dataset based on the selected one of the
first dataset or the second dataset includes normalizing the
runner profile from the first dataset based on at least one
characteristic of the selected one of the first dataset or the
second dataset.

[0008] In some aspects, the first dataset is an inference
dataset, and the second dataset is a training dataset. In some
aspects, the selected one of the first dataset or the second
dataset is the inference dataset.

[0009] In some aspects, the first dataset and the second
dataset include running-related data for a same runner.
[0010] In some aspects, each of the first dataset and the
second dataset includes running-related data for a different
runner.

[0011] In some aspects, the runner profile includes at least
one volume metric, at least one intensity metric, and at least
one long run fraction metric. In some aspects, the at least one
volume metric includes one or more of a short-term volume
metric, a medium-term volume metric, and a long-term
volume metric. In some aspects, the at least one intensity
metric includes one or more of a short-term intensity metric,
a medium-term intensity metric, and a long-term intensity
metric. In some aspects, the at least one long run fraction
metric includes one or more of a short-term long run fraction
metric, a medium-term long run fraction metric, and a
long-term long run fraction metric. In some aspects, the
runner profile further includes one or more of at least one
consistency metric, at least one variability metric, at least
one dynamic metric, or at least one physiological metric.
[0012] In some aspects, the trained machine learning
model is configured to predict the risk of the musculoskel-
etal injury by classifying the runner profile into one of a
plurality of risk categories.

[0013] In some aspects, the trained machine learning
model is configured to predict the risk of the musculoskel-
etal injury by providing a probability of the musculoskeletal
injury.

[0014] In some aspects, the trained machine learning
model is a deep learning model.

[0015] In some aspects, the trained machine learning
model is an artificial neural network.

[0016] In some aspects, the method further includes
adjusting a training plan based on the predicted risk of the
musculoskeletal injury.

[0017] In some aspects, the techniques described herein
relate to a system for predicting risk of running-related
injury, including: at least one processor and at least one
memory, the at least one memory having computer-execut-
able instructions stored thereon that, when executed by the
at least one processor, cause the at least one processor to:
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receive a first dataset including running-related data; com-
pare a first distribution of the first dataset to a second
distribution of a second dataset including running-related
data; based on the comparison, select one of the first dataset
or the second dataset; scale a runner profile from the first
dataset based on the selected one of the first dataset or the
second dataset; input, into a trained machine learning model,
the runner profile; and predict, using the trained machine
learning model, a risk of a musculoskeletal injury based on
the runner profile.

[0018] In some aspects, the techniques described herein
relate to a method for predicting risk of running-related
injury, including: retrieving an inference dataset including
running-related data, where the running-related data
includes a plurality of metrics for each of a plurality of
training periods; scaling a runner profile from the inference
dataset based on at least one characteristic of the inference
dataset, where the runner profile includes the plurality of
metrics for a single training period; inputting, into a trained
machine learning model, the runner profile; and predicting,
using the trained machine learning model, a risk of a
musculoskeletal injury based on the runner profile.

[0019] In some aspects, the trained machine learning
model is trained using a training dataset, where the training
dataset is different than the inference dataset. In some
aspects, the inference dataset and the training dataset include
running-related data for a same runner. In some aspects,
each of the inference dataset and the training dataset
includes running-related data for a different runner.

[0020] In some aspects, the at least one characteristic of
the inference dataset includes a mean or a standard devia-
tion.

[0021] In some aspects, the plurality of metrics include at
least one volume metric, at least one intensity metric, and at
least one long run fraction metric.

[0022] In some aspects, the method further includes
adjusting a training plan based on the predicted risk of the
musculoskeletal injury.

[0023] In some aspects, the techniques described herein
relate to a system for predicting risk of running-related
injury, including: at least one processor and at least one
memory, the at least one memory having computer-execut-
able instructions stored thereon that, when executed by the
at least one processor, cause the at least one processor to:
receive an inference dataset including running-related data,
where the running-related data includes a plurality of met-
rics for each of a plurality of training periods; scale a runner
profile from the inference dataset based on at least one
characteristic of the inference dataset, where the runner
profile comprises the plurality of metrics for a single training
period; input, into a trained machine learning model, the
runner profile; and predict, using the trained machine learn-
ing model, a risk of a musculoskeletal injury based on the
runner profile.

[0024] It should be understood that the above-described
subject matter may also be implemented as a computer-
controlled apparatus, a computer process, a computing sys-
tem, or an article of manufacture, such as a computer-
readable storage medium.

[0025] Other systems, methods, features and/or advan-
tages will be or may become apparent to one with skill in the
art upon examination of the following drawings and detailed
description. It is intended that all such additional systems,
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methods, features and/or advantages be included within this
description and be protected by the accompanying claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0026] The components in the drawings are not necessar-
ily to scale relative to each other. Like reference numerals
designate corresponding parts throughout the several views.
[0027] FIG. 1 is a block diagram illustrating a machine
learning model operating in inference mode according to an
implementation described herein.

[0028] FIG. 2 is a table illustrating an example running-
related dataset according to an implementation described
herein.

[0029] FIG. 3A is a flowchart illustrating example opera-
tions for predicting risk of running-related injury according
to an implementation described herein. FIG. 3B is a flow-
chart illustrating example operations for predicting risk of
running-related injury according to another implementation
described herein.

[0030] FIGS. 4A-4D are tables illustrating the mean and
standard deviation of example inference and training data-
sets according to an implementation described herein. FIGS.
4A and 4B are tables illustrating the mean and standard
deviation of an example inference dataset, respectively. The
example inference dataset includes 40 weeks (i.e. between
the week of Oct. 31, 2022 and the week of Jul. 31, 2023) of
running-related data, which is grouped by week, for an
example runner (the present inventor). FIGS. 4C and 4D are
tables illustrating the mean and standard deviation of an
example training dataset, respectively. The example training
dataset includes more than 5 years (i.e., between about Jan.
1,2018 and Apr. 17, 2023) of running-related data, which is
grouped by week, for the example runner (the present
inventor).

[0031] FIG. 5 is an example computing device.

[0032] FIG. 6 is a table illustrating example feedforward
artificial neural network (ANN) architecture and hyperpa-
rameters according to an example described herein. The
example ANN was trained using a scaled, augmented data-
set. The ANN has 12 input nodes for receiving short-,
medium-, and long-term metrics for each of volume, inten-
sity, consistency, and long run fraction (i.e., the model
“features™).

[0033] FIG. 7 is a graph illustrating AUC for the ANN of
FIG. 6 during training.

DETAILED DESCRIPTION

[0034] Unless defined otherwise, all technical and scien-
tific terms used herein have the same meaning as commonly
understood by one of ordinary skill in the art. Methods and
materials similar or equivalent to those described herein can
be used in the practice or testing of the present disclosure.
As used in the specification, and in the appended claims, the
singular forms “a,” “an,” “the” include plural referents
unless the context clearly dictates otherwise. The term
“comprising” and variations thereof as used herein is used
synonymously with the term “including” and variations
thereof and are open, non-limiting terms. The terms
“optional” or “optionally” used herein mean that the subse-
quently described feature, event or circumstance may or may
not occur, and that the description includes instances where
said feature, event or circumstance occurs and instances
where it does not. Ranges may be expressed herein as from
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“about” one particular value, and/or to “about” another
particular value. When such a range is expressed, an aspect
includes from the one particular value and/or to the other
particular value. Similarly, when values are expressed as
approximations, by use of the antecedent “about,” it will be
understood that the particular value forms another aspect. It
will be further understood that the endpoints of each of the
ranges are significant both in relation to the other endpoint,
and independently of the other endpoint. As used herein, the
terms “about” or “approximately” when referring to a mea-
surable value such as an amount, a percentage, and the like,
is meant to encompass variations of +20%, +10%, +5%, or
+1% from the measurable value.

[0035] Described herein are machine learning-based sys-
tems and methods for predicting risk of musculoskeletal
injury in a runner. As noted above, runners are at high risk
of injury due, at least in part, to the repetitive stress running
imposes on the human body. For example, more than 50%
of runners (~80% according to some estimates) experience
an injury each year. This is particularly true for long distance
runners. The machine learning-based systems and methods
described herein can predict risk of musculoskeletal injury
based on patterns present in running-related data. For
example, the interrelationship between running volume,
intensity, consistency, variability, fractional contribution of
long run, and other characteristics is highly complex.
Machine learning is a technical tool that is capable of
analyzing complex data and identifying patterns in data. As
described herein, the machine learning-based systems and
methods analyze the interrelationship between various met-
rics present in a runner’s data.

[0036] The present disclosure is concerned with general-
ization, i.e., a trained model’s ability to perform well on
new, unseen data that it has not encountered during its
training phase. As used herein, new data or unseen data
refers to data not used to train a machine learning model. In
other words, the new data or unseen data is not included in
the training dataset. A model that generalizes well is able to
learn the underlying patterns from the training data and
apply those patterns to make accurate predictions or classi-
fications on data it has not seen before such as new or unseen
inference data. Thus, an objective of machine learning is not
just to perform well on the training data but to produce
accurate predictions on unseen data as well. Generalization
is a measure of how well a model has learned the relevant
features and patterns from the training data without memo-
rizing the data itself.

[0037] Data preprocessing is one aspect that can impact
the trained model’s ability to generalize to unseen data. And
as described below, the datasets of the present disclosure-
running-related datasets-pose challenges for the trained
model’s ability to generalize. Thus, the present disclosure
includes steps to ensure better preprocessing in order to
improve the trained model’s ability to generalize. As
described herein, the model is trained on using a training
dataset comprising running-related data, and it is then
deployed to make predictions on inference data. The infer-
ence data is unseen data (i.e., it was not used for training the
model). In some implementations, the training and inference
datasets include running-related data for a same runner. In
these implementations, the runner’s inference data may
cover a different period of time than data included in the
training data such that the quantity and/or quality of the
runner’s inference data (e.g., including consistency, volume,
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intensity, long run fraction, etc. metrics) is different than the
quantity and/or quality of the runner’s training data (e.g.,
including consistency, volume, intensity, long run fraction,
etc. metrics). For example, the inference data may include
the runner’s data for a higher volume and/or intensity
training period (e.g. marathon training cycle), while the
training data (which was used to train the model) includes
lower volume and/or intensity periods. In this case, the
distributions of inference data and training data are expected
to be different. Alternatively, in other implementations, the
training and inference datasets include running-related data
for a different runner. In these implementations, the quantity
and/or quality of the inference data (e.g., including consis-
tency, volume, intensity, long run fraction, etc. metrics) for
one runner will be different than the quantity and/or quality
of the training data for a different runner (e.g., including
consistency, volume, intensity, long run fraction, etc. met-
rics). Again, in this case, the distributions of inference and
training data are expected to be different.

[0038] It is generally good practice in machine learning to
scale the inference data in the same way as the training data.
This may not always be the best practice for datasets of the
present disclosure. For example, there is a chance that the
training data is not representative of the inference data in the
present disclosure due to the type of data (i.e., running-
related data). The trained model of the present disclosure is
configured to predict a running-related injury, which can be
considered an anomaly (e.g., a data point that is significantly
different from the normal data). When anomaly detection is
the goal, it may be difficult to obtain a representative set of
training data that includes a sufficient number of anomalous
examples. In such cases, the inference data can instead be
scaled based on itself (e.g., using the mean and standard
deviation of the inference data). The present disclosure
therefore includes steps for analyzing respective distribu-
tions of the training and inference datasets. Based on this
analysis, the inference data is scaled accordingly. Impor-
tantly, in cases where distributions are significantly different,
inference data is scaled based on its own characteristics
(e.g., mean and/or standard deviation). Thus, the machine
learning-based systems and methods described herein pro-
vide improvements over existing technologies by perform-
ing a data analysis on the training and inference datasets and
then not always scaling inference data in the same manner
as training data as would typically be done. This improves
the trained machine learning model’s ability to generalize to
new or unseen data.

[0039] The term “artificial intelligence” is defined herein
to include any technique that enables one or more computing
devices or comping systems (i.e., a machine) to mimic
human intelligence. Artificial intelligence (Al) includes, but
is not limited to, knowledge bases, machine learning, rep-
resentation learning, and deep learning. The term “machine
learning” is defined herein to be a subset of Al that enables
a machine to acquire knowledge by extracting patterns from
raw data. Machine learning techniques include, but are not
limited to, logistic regression, support vector machines
(SVMs), decision trees, Naive Bayes classifiers, and artifi-
cial neural networks. The term “representation learning” is
defined herein to be a subset of machine learning that
enables a machine to automatically discover representations
needed for feature detection, prediction, or classification
from raw data. Representation learning techniques include,
but are not limited to, autoencoders. The term “deep learn-



US 2025/0054635 Al

ing” is defined herein to be a subset of machine learning that
that enables a machine to automatically discover represen-
tations needed for feature detection, prediction, classifica-
tion, etc. using layers of processing. Deep learning tech-
niques include, but are not limited to, artificial neural
network or multilayer perceptron (MLP).

[0040] Machine learning models include supervised,
semi-supervised, and unsupervised learning models. In a
supervised learning model, the model learns a function that
maps an input (also known as feature or features) to an
output (also known as target or targets) during training with
a labeled data set (or dataset). In an unsupervised learning
model, the model learns patterns (e.g., structure, distribu-
tion, etc.) within an unlabeled data set. In a semi-supervised
model, the model learns a function that maps an input (also
known as feature or features) to an output (also known as
target or target) during training with both labeled and
unlabeled data.

[0041] As used herein, musculoskeletal injuries affect a
runner’s bones, joints, or soft tissues such as muscles,
tendons, ligaments, or other connective tissue. Running-
related injuries include, but are not limited to, those affecting
the feet, knees, upper or lower legs, hips, pelvis, or groin.
Example running-related musculoskeletal injuries include,
but are not limited to, stress fractures, tendonitis, plantar
fasciitis, iliotibial (IT) band syndrome, strains, and sprains.
Additionally, this disclosure contemplates that a musculo-
skeletal injury forces a runner to rest (not run) for an
extended period of time (e.g., from 3-5 days or longer such
as several weeks, months, or even longer). Thus, as used
herein, a running-related injury results in a runner taking 3
or more consecutive days of rest. Optionally, a running-
related injury results in a runner taking at least 5 consecutive
days of rest.

[0042] Referring now to FIG. 1, a block diagram illustrat-
ing a machine learning model 100 is shown. In FIG. 1, the
machine learning model 100 is operating in inference mode.
In other words, the machine learning model 100 has already
been trained with a data set (or “dataset”). Techniques for
training a machine learning model for predicting running-
related injuries are described in U.S. Pat. No. 11,515,045 to
Anderson, titled “Predicting risk of running-related injury
using a machine learning model and related machine learn-
ing training methods,” the disclosure of which is incorpo-
rated herein by reference in its entirety. This disclosure
contemplates that the machine learning model 100 is a
supervised learning model. According to supervised learn-
ing, the machine learning model 100 “learns™ a function that
maps an input 110 (sometimes referred to herein as the
“features”) to an output 120 (sometimes referred to herein as
the “target”) based on a data set, which includes a plurality
of samples from a running-related training dataset tagged
with one or more labels (e.g., the injury/no injury tags
described herein), during model training mode. It should be
understood that supervised learning is provided only as an
example. This disclosure contemplates that the machine
learning model 100 may be a semi-supervised learning
model in some implementations. Semi-supervised learning
models are trained with a data set including both labeled data
as well as unlabeled data.

[0043] The machine learning model 100 shown in FIG. 1
can be an artificial neural network. Optionally, the machine
learning model 100 is a deep neural network, which includes
multiple hidden layers between the input and output layers
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(described below). An artificial neural network is a comput-
ing system including a plurality of interconnected neurons
(e.g., also referred to as “nodes”). This disclosure contem-
plates that the nodes can be implemented using a computing
device (e.g., a processing unit and memory as described
herein). The nodes can optionally be arranged in a plurality
of layers such as input layer, output layer, and one or more
hidden layers. Fach node is connected to one or more other
nodes in the artificial neural network. For example, each
layer has a plurality of nodes, where each node is connected
to all nodes in the previous layer. The nodes in a given layer
are not interconnected with one another, i.e., the nodes in a
given layer function independently of one another. As used
herein, nodes in the input layer receive data (sometimes
referred to herein as the “features” or input 110) from
outside of the artificial neural network, nodes in the hidden
layer(s) modify the data between the input and output layers,
and nodes in the output layer provide the results (sometimes
referred to herein as the “target” or output 120).

[0044] Each node in the artificial neural network is con-
figured to receive an input and implement a function (some-
times referred to herein as the “activation function”). In
other words, the activation function defines the node output
for a given input. Activation functions include, but are not
limited to, binary step, sigmoid, tanh, and rectified linear
unit (ReL.U). Additionally, each node is associated with a
respective weight. Artificial neural networks are trained with
a data set to minimize or maximize an objective function,
which is a measure of the artificial neural network’s perfor-
mance. The objective function may be a cost function. Cost
functions include, but are not limited to, mean squared error
(MSE), mean absolute error, [.1 loss (least absolute devia-
tions), L2 loss (least squares loss), and cross-entropy loss.
Training algorithms for artificial neural networks include,
but are not limited to, backpropagation (BP). The training
algorithm tunes the node weights and/or bias to minimize or
maximize the objective function. For example, BP involves
computing the gradient of the objective function with
respect to the respective weights for each of the nodes. It
should be understood that any algorithm that finds the
minimum or maximum of the objective function can be used
to for training an artificial neural network. Although artifi-
cial neural networks are provided as an example, this
disclosure contemplates that the machine learning model
100 can be other types of models including, but not limited
to, a logistic regression model or a support vector machine.

[0045] As described above, the machine learning model
100 is trained to map the input 110 to the output 120. In the
examples described herein, the input 110 is a runner profile,
and the output 120 is a risk of musculoskeletal injury, e.g.,
running-related musculoskeletal injury. As used herein, the
risk of musculoskeletal injury can be a classification (e.g.,
injury or no injury) in some implementations or a predicted
risk value (e.g., regression) in other implementations. As
described above, musculoskeletal injuries affect a runner’s
bones, joints, or soft tissues and also force the runner to rest
for an extended time period. The runner profile includes one
or more “features” that are input into the machine learning
model 100, which predicts risk of musculoskeletal injury
based on the features. The risk of musculoskeletal injury is
therefore the “target” of the machine learning model 100.

[0046] This disclosure contemplates that the running-re-
lated datasets described herein can be obtained from a
runner’s log, e.g., the record used to track running-related
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information such as mileage, running duration, physiologi-
cal data, environmental conditions, injuries, or other infor-
mation related to running. Optionally, the runner’s log is
maintained in an electronic medium. For example, Internet-
based services for tracking fitness data are in common use by
runners. Example Internet-based services include, but are
not limited to, the STRAVA mobile app and website of
Strava, Inc. of San Francisco, California and GARMIN
CONNECT mobile app and website of Garmin International
of Olathe, Kansas. It should be understood that the STRAVA
and GARMIN CONNECT mobile apps and websites are
provided only as example Internet-based services. This
disclosure contemplates that other electronic and/or Inter-
net-based services may be used to track running-related data.

[0047] Internet-based services maintain a vast amount of
running-related data for a plurality of runners. For example,
the STRAVA mobile app and website had approximately 76
million users in 2021. Running-related data includes, but is
not limited to, global positioning system (GPS) route data
(e.g., XML format files such as GPX or TCX files); mileage;
duration; pace; speed; sensor data (e.g., heart rate monitor,
accelerometer, etc.); dynamic data (e.g., cadence, stride
length); perceived effort; and free-form comments. Such
running-related data is primarily measured using a device,
for example, a running watch, fitness tracker, or mobile
phone. These devices include built-in location service such
as GPS and, optionally, built-in or external sensors. An
example running watch is the GARMIN FORERUNNER
watch of Garmin International of Olathe, Kansas. It should
be understood that the GARMIN FORERUNNER watch is
provided only as an example. This disclosure contemplates
that other devices may be used to measure running-related
data. Alternatively or additionally, running-related data may
be entered or altered by the runner.

[0048] Referring now to FIG. 2, an example dataset com-
prising running-related data is shown. The running data was
obtained from an electronic runner’s log, and metrics (e.g.,
volume, intensity, long run fraction, consistency) were cal-
culated as described below using the Python programming
language. The example dataset shown in FIG. 2 includes 24
rows of running-related data, which is grouped by week.
Accordingly, each row corresponds to a week between Feb.
20, 2023 and Jul. 31, 2023, and each column corresponds to
a metric. It should be understood that the number of weeks
of data in FIG. 2 (i.e., 24 weeks) is provided only as an
example. In some implementations, the dataset may include
more than 24 weeks of running-related data, e.g., 25, 26, 27,
28, 29, 30, 31, 32, 33, 34, 35, 36, or more weeks of
running-related data. Optionally, the dataset may include 36
weeks of running-related data. Optionally, the dataset may
include 52 weeks of running-related data. Alternatively, the
dataset may include less than 24 weeks of running-related
data, e.g., 23, 22, 21, 20, 19, 18, or less weeks of running-
related data. Optionally, the dataset may include 18 weeks of
running-related data. It should also be understood that the
running-related data may include more or less metrics than
shown in FIG. 2.

[0049] As described below, metrics are provided for short-
term, medium-term, and long-term periods. As used herein,
a short-term period represents a training period. A training
period can optionally be a 7 day period (e.g., a calendar
week). It should be understood that a training period may be
more or less than 7 days (e.g., a 10-day or 5-day period). It
should also be understood that the training period length can
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be selected by a runner. As used herein, a medium-term
period includes a plurality of training periods. The number
of training periods in a medium-term period is selected to
create metrics representing the transient fitness level of and
stress on the runner. For example, the medium-term period
can be a 2-4 week period (i.e., 2-4, 7-day training periods).
Optionally, the medium-term period can be a 3 week period
(i.e., three, 7-day training periods). It should be understood
that 2-4 weeks is only provided as an example. As used
herein, a long-term period includes a plurality of training
periods, which is greater than the number of training periods
of the medium-term period. The number of training periods
in a long-term period is selected to create metrics represent-
ing the base fitness level of and stress on the runner. For
example, the long-term period can be a 10-14 week period
(i.e., 10-14, 7-day training periods). Optionally, the long-
term period can be a 12 week period (i.e., twelve, 7-day
training periods). It should be understood that 10-14 weeks
is only provided as an example.

[0050] The running-related data includes at least one vol-
ume metric. Volume metrics include, but are not limited to,
a daily volume metric, a short-term volume metric, a
medium-term volume metric, and a long-term volume met-
ric. Optionally, in some implementations as shown in FIG.
2, the volume metrics includes a short-term volume metric
(STVol in FIG. 2), a medium-term volume metric (MTVol in
FIG. 2), and a long-term volume metric (LTVol in FIG. 2).
This disclosure contemplates that a volume metric is a
measure of running time or duration (e.g., hours, minutes,
seconds) and/or running distance (e.g., miles, kilometers). In
FIG. 2, volume is a distance (miles). Additionally, this
disclosure contemplates that the volume metrics can be
obtained (e.g., received, downloaded, etc.) and/or derived
from the electronic runner’s log described above. As used
herein, a daily volume metric is a 1-day cumulative run
length (e.g., daily total), which can optionally include one or
more runs. As used herein, a short-term volume metric is the
cumulative run length during a training period. Additionally,
as described above, a training period can optionally be a 7
day period (e.g., a calendar week). It should be understood
that a training period may be more or less than 7 days (e.g.,
a 10-day or 5-day period). As used herein, a medium-term
volume metric is an average cumulative run length over a
plurality of training periods, for example, the average train-
ing period (e.g., weekly) run length over a 2-4 week period.
It should be understood that 2-4 weeks is only provided as
an example medium-term period. As used herein, a long-
term volume metric is an average cumulative run length over
a plurality of training periods, for example, the average
training period (e.g., weekly) run length over a 10-14 week
period. It should be understood that 10-14 weeks is only
provided as an example long-term period. The short-,
medium-, and long-term volume metrics represent cumula-
tive run lengths over progressively longer periods of time.
Additionally, as described above, run length can be mea-
sured by a duration and/or a distance.

[0051] The table in FIG. 2 illustrates short-term, medium-
term, and long-term volume metrics. For example, the table
includes short-term volume metrics (“STVol”), medium-
term volume metrics (“MTVol”), and long-term volume
metrics (“LTVol”) for an example runner during twenty four
(24) consecutive weeks in 2023 (i.e., weeks of February 20th
through July 31%). In FIG. 2, the short-term, medium-term,
and long-term periods are 1, 3, and 12 weeks, respectively.
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As described above, these lengths are provided only as
examples. Additionally, it should be understood that the
metrics shown in FIG. 2 were calculated from data included
in the example runner’s electronic log. This disclosure
contemplates that short-term, medium-term, and/or long-
term metrics can be calculated using any tools known in the
art including, but not limited to a spreadsheet (e.g.,
MICROSOFT EXCEL spreadsheets of Microsoft Corp. of
Redmond, WA), a computer program or application (e.g.,
MATLAB platform of MathWorks Corp. of Natick, MA), or
a programming language (e.g., Python) library or toolkit.
[0052] The running-related data also includes at least one
intensity metric. Intensity metrics include, but are not lim-
ited to, a daily intensity metric, a short-term intensity metric,
a medium-term intensity metric, and a long-term intensity
metric. Optionally, in some implementations as shown in
FIG. 2, the intensity metrics includes a short-term intensity
metric (STPac in FIG. 2), a medium-term intensity metric
(MTPac in FIG. 2), and a long-term intensity metric (LTPac
in FIG. 2). This disclosure contemplates that an intensity
metric is a running pace or running speed. Pace is measured
as a time per distance unit (e.g., minutes per mile or minutes
per kilometer). Speed is measured as distance per unit time
(e.g., miles per hour or kilometers per hour). In FIG. 2,
intensity is a pace (seconds per mile). Additionally, this
disclosure contemplates that the intensity metrics can be
obtained (e.g., received, downloaded, etc.) and/or derived
from the electronic runner’s log described above. As used
herein, a daily intensity metric is a 1-day average intensity
(e.g., pace or speed). As used herein, a short-term intensity
metric is the average intensity (e.g., pace or speed) during a
training period. As used herein, a medium-term intensity
metric is the average intensity (e.g., pace or speed) over a
plurality of training periods. As used herein, a long-term
intensity metric is the average intensity (e.g., pace or speed)
over a plurality of training periods. The daily, short-,
medium-, and long-term intensity metrics represent average
intensity over progressively longer periods of time. Addi-
tionally, as described above, run intensity can be measured
by pace or speed.

[0053] The table in FIG. 2 illustrates short-term, medium-
term, and long-term intensity metrics. For example, the table
includes short-term volume metrics (“STPac”), medium-
term volume metrics (“MTPac”), and long-term volume
metrics (“LTPac”) for an example runner during twenty four
(24) consecutive weeks in 2023 (i.e., weeks of February 20th
through July 31°9). In FIG. 2, the short-term, medium-term,
and long-term periods are 1, 3, and 12 weeks, respectively.
As described above, these lengths are provided only as
examples. Additionally, it should be understood that the
metrics shown in FIG. 2 were calculated from data included
in the example runner’s electronic log. This disclosure
contemplates that short-term, medium-term, and/or long-
term metrics can be calculated using any tools known in the
art including, but not limited to a spreadsheet (e.g.,
MICROSOFT EXCEL spreadsheets of Microsoft Corp. of
Redmond, WA), a computer program or application (e.g.,
MATLAB platform of MathWorks Corp. of Natick, MA), or
a programming language (e.g., Python) library or toolkit.

[0054] The running-related data also includes at least one
long run fraction metric. Long run fraction metrics include,
but are not limited to, one or more of a short-term long run
fraction metric (STLrf in FIG. 2), a medium-term long run
fraction metric (MTLtf in FIG. 2), and a long-term long run
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fraction metric (LTLrf in FIG. 2). In FIG. 2, the long run
fraction metric represents a long run volume (miles) divided
by a training period volume (miles). For example, if a
runner’s longest run during a 7-day training period is 10
miles and the runner’s total mileage during the 7-day
training period is 50 miles, the long run fraction metric is
0.2. Additionally, this disclosure contemplates that the long
run fraction metrics can be obtained (e.g., received, down-
loaded, etc.) and/or derived from the electronic runner’s log
described above. As used herein, a short-term long run
fraction metric is a long run volume divided by total volume
during a training period. For example, the short-term long
run fraction metric is 0.2 when a runner’s longest run is 10
miles during 7-day training period where total mileage is 50
miles. As used herein, a medium-term long run fraction
metric is the average long run fraction metric over a plurality
of training periods. For example, if a runner’s long run
fraction is 0.2, 0.3, and 0.4 during each of three consecutive
7-day training periods, respectively, then the medium-term
long run fraction metric is 0.3. As used herein, a long-term
long run fraction metric is the average long run fraction
metric over a plurality of training periods. For example, if a
runner’s long run fraction is 0.2, 0.3, 0.4, 0.25,0.3,0.25, 0.2,
0.2,0.4,0.3,0.25, and 0.2 during each of twelve consecutive
7-day training periods, respectively, then the long-term long
run fraction metric is 0.27. The short-, medium-, and long-
term long run fraction metrics capture the training period-
to-training period fractional contribution of a runner’s lon-
gest run to total volume over progressively longer periods of
time. This disclosure contemplates that patterns predictive
of injury risk are present in the volume, intensity, and long
run fraction metrics found in running-related data.

[0055] The table in FIG. 2 illustrates short-term, medium-
term, and long-term long run fraction metrics. For example,
the table includes short-term volume metrics (“STLrf”),
medium-term volume metrics (“MTLrf”), and long-term
volume metrics (“LTLrf”) for an example runner during
twenty four (24) consecutive weeks in 2023 (i.e., weeks of
February 20th through July 31%%). In FIG. 2, the short-term,
medium-term, and long-term periods are 1, 3, and 12 weeks,
respectively. As described above, these lengths are provided
only as examples. Additionally, it should be understood that
the metrics shown in FIG. 2 were calculated from data
included in the example runner’s electronic log. This dis-
closure contemplates that short-term, medium-term, and/or
long-term metrics can be calculated using any tools known
in the art including, but not limited to a spreadsheet (e.g.,
MICROSOFT EXCEL spreadsheets of Microsoft Corp. of
Redmond, WA), a computer program or application (e.g.,
MATLAB platform of MathWorks Corp. of Natick, MA), or
a programming language (e.g., Python) library or toolkit.

[0056] Optionally, the running-related data also includes
at least one consistency metric. Consistency metrics include,
but are not limited to, a short-term consistency metric
(STCon in FIG. 2), a medium-term consistency metric
(MTCon in FIG. 2), and a long-term consistency metric
(LTCon in FIG. 2). This disclosure contemplates that a
consistency metric represents a number of running days (or
number of runs) during the short-term, medium-term, and/or
long-term periods. In FIG. 2, consistency is a raw number of
runs during a training period. Additionally, this disclosure
contemplates that the consistency metrics can be obtained
(e.g., received, downloaded, etc.) and/or derived from the
electronic runner’s log described above. As used herein, a
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short-term consistency metric is the number of running days
or raw number of runs during a training period. For example,
if a runner ran every day Monday through Friday during a
7-day training period, then the short-term consistency metric
is 5. As used herein, a medium-term consistency metric is
the average consistency over a plurality of training periods.
For example, if a runner ran 5, 6, and 7 days during each of
three consecutive 7-day training periods, respectively, then
the medium-term consistency metric is 6. As used herein, a
long-term intensity metric is the average consistency over a
plurality of training periods. For example, if a runner ran 5,
6,7,0,1,1,5,6,7,4,2, and 4 days during each of twelve
consecutive 7-day training periods, respectively, then the
long-term consistency metric is 4. The short-, medium-, and
long-term consistency metrics represent a runner’s training
period-to-training period consistency over progressively
longer periods of time. Additionally, as described above,
consistency can be measured by a number of running days
or raw number of runs. This disclosure contemplates that
patterns predictive of injury risk are present in the volume,
intensity, long run fraction, and consistency metrics found in
running-related data.

[0057] The table in FIG. 2 illustrates short-term, medium-
term, and long-term consistency metrics. For example, the
table includes short-term volume metrics (“STCon”),
medium-term volume metrics (“MTCon”), and long-term
volume metrics (“LTCon”) for an example runner during
twenty four (24) consecutive weeks in 2023 (i.e., weeks of
February 20th through July 31°%). In FIG. 2, the short-term,
medium-term, and long-term periods are 1, 3, and 12 weeks,
respectively. As described above, these lengths are provided
only as examples. Additionally, it should be understood that
the metrics shown in FIG. 2 were calculated from data
included in the example runner’s electronic log. This dis-
closure contemplates that short-term, medium-term, and/or
long-term metrics can be calculated using any tools known
in the art including, but not limited to a spreadsheet (e.g.,
MICROSOFT EXCEL spreadsheets of Microsoft Corp. of
Redmond, WA), a computer program or application (e.g.,
MATLAB platform of MathWorks Corp. of Natick, MA), or
a programming language (e.g., Python) library or toolkit.

[0058] Alternatively or additionally, the running-related
data optionally includes at least one variability metric.
Variability metrics include, but are not limited to, a short-
term variability metric, a medium-term variability metric,
and a long-term variability metric. This disclosure contem-
plates that a variability metric represents a number of
high-intensity running days (or number of high-intensity
runs) during the short-term, medium-term, and/or long-term
periods. As used herein, a high-intensity run is a run requir-
ing greater than ordinary effort by a runner. For example, a
workout and a race are considered high-intensity runs.
Additionally, this disclosure contemplates that the variabil-
ity metrics can be obtained (e.g., received, downloaded, etc.)
and/or derived from the electronic runner’s log described
above. As used herein, a short-term variability metric is the
number of high-intensity running days or raw number of
high-intensity runs during a training period. For example, if
a runner ran with high-intensity (e.g., workout, race, etc.)
twice during a 7-day training period, then the short-term
variability metric is 2. As used herein, a medium-term
variability metric is the average variability over a plurality
of training periods. For example, if a runner ran with high
intensity (e.g., workout, race, etc.) 2, 1, and 1 days during
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each of three consecutive 7-day training periods, respec-
tively, then the medium-term variability metric is 1.33. As
used herein, a long-term variability metric is the average
variability over a plurality of training periods. For example,
if a runner ran with high intensity (e.g., workout, race, etc.)
2,1,1,0,0,1,1,2,2,0, 1, and 1 days during each of twelve
consecutive 7-day training periods, respectively, then the
long-term variability metric is 1. The short-, medium-, and
long-term variability metrics capture training period-to-
training period high-intensity efforts over progressively lon-
ger periods of time. Additionally, as described above, vari-
ability can be measured by a number of high-intensity
running days or raw number of high-intensity runs. This
disclosure contemplates that patterns predictive of injury
risk are present in the volume, intensity, long run fraction,
consistency, and variability metrics or combinations thereof
found in running-related data.

[0059] Alternatively or additionally, the running-related
data optionally includes at least one dynamic metric.
Dynamic metrics include, but are not limited to, a daily
dynamic metric, a short-term dynamic metric, a medium-
term dynamic metric, and a long-term dynamic metric.
Optionally, in some implementations, the dynamic metrics
includes a short-term dynamic metric, a medium-term
dynamic metric, and a long-term dynamic metric. This
disclosure contemplates that a dynamic metric defines an
aspect of a runner’s motion. Dynamic metrics can be derived
from sensor data such as accelerometer or internal sensor
data. Example dynamic metrics include, but are not limited
to, cadence or stride length. Additionally, this disclosure
contemplates that the dynamic metrics can be obtained (e.g.,
received, downloaded, etc.) and/or derived from the elec-
tronic runner’s log described above. As used herein, a daily
dynamic metric is a 1-day average dynamic metric such as
cadence or stride length. As used herein, a short-term
dynamic metric is the average dynamic metric such as
cadence or stride length during a training period. As used
herein, a medium-term dynamic metric is the average
dynamic metric such as cadence or stride length over a
plurality of training periods. As used herein, a long-term
dynamic metric is the average dynamic metric such as
cadence or stride length over a plurality of training periods.
The daily, short-, medium-, and long-term dynamic metrics
represent average dynamic metrics such as cadence or stride
length over progressively longer periods of time. This dis-
closure contemplates that patterns predictive of injury risk
are present in the combination of volume, intensity, long run
fraction, consistency, variability, and dynamic metrics or
combinations thereof found in running-related data.

[0060] Alternatively or additionally, the running-related
data optionally includes a physiological metric. Physiologi-
cal metrics include, but are not limited to, a daily physi-
ological metric, a short-term physiological metric, a
medium-term physiological metric, and a long-term physi-
ological metric. Optionally, in some implementations, the
physiological metrics includes a short-term physiological
metric, a medium-term physiological metric, and a long-
term physiological metric. Physiological metrics include,
but are not limited to, heart rate data, oxygen saturation data,
or VO, max data, for example. Optionally, the heart rate data
is average heart rate or heart rate variability (HRV). Addi-
tionally, this disclosure contemplates that the physiological
metrics can be obtained (e.g., received, downloaded, etc.)
and/or derived from the electronic runner’s log described
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above. As used herein, a daily physiological metric is a
1-day average physiological metric such as heart rate during
a run. As used herein, a short-term physiological metric is
the average physiological metric such as running heart rate
during a training period. As used herein, a medium-term
physiological metric is the average physiological metric
such as running heart rate over a plurality of training
periods. As used herein, a long-term physiological metric is
the average physiological metric such as running heart rate
over a plurality of training periods. The daily, short-,
medium-, and long-term physiological metrics represent the
average physiological metric over progressively longer peri-
ods of time. This disclosure contemplates that patterns
predictive of injury risk are present in the volume, intensity,
long run fraction, consistency, variability, dynamic, and
physiological metrics or combinations thereof found in
running-related data.

[0061] FIG. 3A is a flowchart of an example method for
predicting risk of running-related injury. This disclosure
contemplates that the method of FIG. 3A can be performed
using one or more computing devices, e.g., computing
device 500 shown in FIG. 5. At step 310, the method
includes retrieving a first dataset comprising running-related
data. The first dataset can optionally be stored in a data
storage medium (e.g. memory). The first dataset can be
grouped by week (e.g., a training period) as discussed above
with regard to FIG. 2, where each row corresponds to a
given week and each column corresponds to a metric.
Metrics can include, but are not limited to, short-term,
medium-term, and long-term metrics for each of volume,
intensity, long run fraction, and consistency as shown in
FIG. 2. As described herein, medium- and long-term metrics
can be calculated based on the short-term metrics. In some
implementations, the first dataset includes about 12 training
periods of data. In some implementations, the first dataset
includes about 18 training periods of data. In some imple-
mentations, the first dataset includes about 24 training
periods of data. In some implementations, the first dataset
includes about 30 training periods of data. In some imple-
mentations, the first dataset includes about 36 training
periods of data. In the examples described herein, a training
period is optionally 1 week (i.e., 7 days). Additionally, it
should be understood that the number of training periods of
data included in the first dataset set forth above are only
provided as example. Optionally, in some implementations,
the first dataset includes two or more times the number of
training periods as the length of the long-term metric. For
example, if the long-term metric is an average of 12 training
periods (e.g., 12 weeks), then the first dataset includes at
least 24 training periods (e.g., 24 weeks) of data, which is
grouped by week. Optionally, the first dataset is an inference
dataset. For example, in the example of FIG. 3A, the first
dataset may be the example inference dataset discussed
above with regard to FIGS. 4A and 4B, i.e., 40 weeks of data
between the week of Oct. 31, 2022 and the week of Jul. 31,
2023. This represents the most-recent period of running-
related data for the present inventor at the time of provi-
sional application filing. Additionally, each week in the first
dataset includes short-term, medium-term, and long-term
metrics for consistency (STCon, MTCon, ITCon), volume
(STVol, MTVol, LTVol), long run fraction (STLrf, MTLrf,
LTLrf), and intensity (STPac, MTPac, LTPac). And as
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described below, the inference sample (e.g., the runner
profile) can eventually be obtained from the first dataset
after further processing.

[0062] The first dataset may be retrieved from an elec-
tronic runner’s log and/or from a data storage medium (e.g.
memory). In some implementations, the step of retrieving
includes obtaining the short-term metrics (e.g. metrics for
each of volume, intensity, long run fraction, and consis-
tency) for a plurality of training periods, which are grouped
by week, from the electronic runner’s log and then calcu-
lating the medium- and long-term metrics as described
herein. In this implementation, all of the running-related
data is maintained in the electronic runner’s log, which is
optionally remote from the computing environment per-
forming the operations of FIG. 3A. In other implementa-
tions, the step of retrieving includes obtaining the short-term
metrics (e.g. metrics for each of volume, intensity, long run
fraction, and consistency) for a plurality of training periods,
which are grouped by week, from the data storage medium
(e.g. memory) and then calculating the medium- and long-
term metrics as described herein. In this implementation, all
of the running-related data is maintained in the data storage
medium (e.g. memory), which is optionally the local to or
remote from the computing environment performing the
operations of FIG. 3A. In yet other implementations, the step
of retrieving includes obtaining the short-term metrics (e.g.
metrics for each of volume, intensity, long run fraction, and
consistency) for one or more training periods (e.g. recent
data), which are grouped by week, from the electronic
runner’s log, obtaining the short-term metrics (e.g. metrics
for each of volume, intensity, long run fraction, and consis-
tency) for one or more training periods (e.g. older data),
which are grouped by week, from data storage medium (e.g.
memory), combining the recent and older data, and then
calculating the medium- and long-term metrics as described
herein. In this implementation, some of the running-related
data is maintained in the electronic runner’s log and some of
the running-related data is maintained in the data storage
medium (e.g. memory).

[0063] At step 320, the method includes comparing a first
distribution of the first dataset to a second distribution of a
second dataset comprising running-related data. As
described below, the objective of the comparison is to
determine whether a significant distribution mismatch
exists. Optionally, the second dataset is a training dataset. An
example training dataset is described in U.S. Pat. No.
11,515,045. For example, the training dataset can optionally
include a plurality of years worth of running-related data,
which is grouped by week. Similar to the first dataset, each
week in the training dataset includes short-term, medium-
term, and long-term metrics for consistency (STCon,
MTCon, LTCon), volume (STVol, MTVol, LTVol), long run
fraction (STLrf, MTLrf, LTLrf), and intensity (STPac,
MTPac, LTPac). Additionally, the training dataset is a
labeled dataset, e.g., each of the samples (i.e., a training
period of data) is labeled with an injury state label (e.g., O
for no injury and 1 for injury). In the example of FIG. 3A,
the second dataset may be the example training dataset
discussed above with regard to FIGS. 4C and 4D, which
includes more than 5 years (i.e., between about Jan. 1, 2018
and Apr. 17, 2023) of running-related data, which is grouped
by week, for the example runner (the present inventor). Prior
to training a machine learning model, the training dataset
can be augmented as described in U.S. Pat. No. 11,515,045.
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[0064] As noted above, a first distribution of the first
dataset (e.g., the example inference data) is compared to a
second distribution of the second dataset (e.g., the example
training data) at step 320. Comparing the respective distri-
butions of inference and training data provides insights into
any differences that might impact the performance of the
trained machine learning model (i.e., the model trained with
the training dataset). It is important to identify and address
any significant distribution mismatches to ensure the mod-
el’s generalization ability and accuracy.

[0065] In some implementations, a statistical technique is
used to compare the respective distributions of the first and
second datasets. For example, the statistical technique can
optionally include: calculating respective summary statistics
for each of the first dataset and the second dataset; and
comparing the respective summary statistics of the first
dataset to the respective summary statistics of the second
dataset. Example summary statistics include a mean and
standard deviation. FIGS. 4A and 4B are tables illustrating
the mean and standard deviation of the example inference
dataset, respectively. The example inference dataset includes
40 weeks (i.e. between the week of Oct. 31, 2022 and the
week of Jul. 31, 2023) of running-related data, which is
grouped by week, for an example runner (the present inven-
tor). FIGS. 4C and 4D are tables illustrating the mean and
standard deviation of the example training dataset, respec-
tively. The example training dataset includes more than 5
years (i.e., between about Jan. 1, 2018 and Apr. 17, 2023) of
running-related data, which is grouped by week, for the
example runner (the present inventor). As shown by the
FIGS. 4A-4D, the respective summary statistics differ. In
other words, the distributions of the inference and training
datasets are different, and these differences, if significant,
can impact performance of the trained machine learning
model, e.g. the model’s ability to generalize to new or
unseen data. It should be understood that mean and standard
deviation are provided only as example summary statistics.
Summary statistics can include, but are not limited to, mean,
standard deviation, median, minimum, and maximum,
including combinations thereof. Additionally, it should be
understood that the statistical technique provided above (i.e.,
evaluating summary statistics) is provided only as an
example. This disclosure contemplates that the statistical
technique can be a statistical test that quantifies a similarity
of the first dataset and the second dataset. Statistical tests
include, but are not limited to, the Kolmogorov-Smirnov test
or the Anderson-Darling test. The Kolmogorov-Smirnov test
or the Anderson-Darling test can provide a statistical mea-
sure of the similarity or dissimilarity between the respective
distributions of the first and second datasets.

[0066] As discussed above, the statistical technique can
optionally include: calculating respective summary statistics
for each of the first dataset and the second dataset; and
comparing the respective summary statistics of the first
dataset to the respective summary statistics of the second
dataset, where the summary statistics include a mean and
standard deviation. Example implementations are described
with reference to FIGS. 4A-4D, which include mean and
standard deviation for each of short-term, medium-term, and
long-term metrics for consistency (STCon, MTCon,
LTCon), volume (STVol, MTVol, LTVol), long run fraction
(STLrf, MTLrf, LTLrf), and intensity (STPac, MTPac,
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LTPac). FIGS. 4A and 4B relate to the example inference
dataset, and FIGS. 4C and 4D relate to the example training
dataset.

[0067] In one implementation, the step of comparing
summary statistics can include calculating a percentage
difference between the respective mean values for each
metric of the example inference and training datasets and
determining if such percentage difference exceeds a thresh-
old. Optionally, the threshold is about 10 percent. For
example, calculate the percentage difference between
respective mean values for STVol of the example inference
and training datasets, i.e. the percentage difference between
52.24 and 44.14. This difference exceeds 10 percent. This
calculation can be repeated for the other 11 metrics. If the
percentage difference exceeds the threshold of 10 percent for
greater than or equal to half of the metrics (i.e. the percent-
age difference for 6 or more metrics shown in FIGS. 4A-4D
exceeds 10%), then a significant distribution mismatch
exists.

[0068] In another implementation, the step of comparing
summary statistics may include calculating a percentage
difference between the respective mean values for a subset
of metrics of the example inference and training datasets and
determining if such percentage difference exceeds a thresh-
old. Optionally, the subset of metrics includes only the
long-term metrics. Optionally, the threshold is about 10
percent. For example, calculate the percentage difference
between respective mean values for LTVol of the example
inference and training datasets, i.e. the percentage difference
between 53.68 and 43.61. This difference exceeds 10 per-
cent. This calculation can be repeated for the other 3
long-term metrics. If the percentage difference exceeds the
threshold of 10 percent for greater than or equal to half of the
metrics (i.e. the percentage difference for 2 or more long-
term metrics shown in FIGS. 4A-4D exceeds 10%), then a
significant distribution mismatch exists.

[0069] Alternatively or additionally, in some implementa-
tions, a visualization technique is used to compare the
respective distributions of the first and second datasets. For
example, the visualization technique can include: creating
respective histograms for each of the first dataset and the
second dataset; plotting the respective histograms for each
of'the first dataset and the second dataset; and comparing the
respective histogram for the first dataset to the respective
histogram for the second dataset. This disclosure contem-
plates that a visualization such as respective histograms can
be used to understand whether the distributions of the first
and second datasets are different, which may impact perfor-
mance of the trained machine learning model. It should be
understood that a histogram is provided only as an example
plot for visualizing dataset distribution. Alternative plots for
visualizing dataset distribution can include, but are not
limited to, Kernel density estimation (KDE) plot and Quan-
tile-Quantile (Q-Q) plot. A KDE plot can provide a smooth
estimate of the probability density function (PDF) and can
help visualize the shape and overlap of the respective
distributions of the first and second datasets. A Q-Q plot can
be used to assess how well the distributions match by
comparing the quantiles of the two the first and second
datasets. If the points lie approximately on a straight line, it
suggests that the distributions are similar.

[0070] At step 330, the method includes selecting one of
the first dataset or the second dataset based on the compari-
son. As described above, a threshold can be set by the user
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to identify significant distribution mismatches between the
first dataset (e.g., the example inference dataset) and the
second dataset (e.g., the example training dataset). As
described herein, inference data is typically scaled in the
same manner as the training data. This is good practice
assuming that the training data is representative of the
distribution of the inference data. In cases, however, where
the training data is not representative of the distribution of
the inference data (i.e., there is a significant distribution
mismatch), the inference data can be scaled in a different
manner, for example using the mean and standard deviation
of the inference dataset (instead of using the mean and
standard deviation of the training dataset). Scaling the
inference data based on at least one characteristic of the
inference dataset may have advantages where the trained
model is configured to predict an anomaly such as a running-
related injury. Accordingly, step 330 results in selection of a
dataset (e.g., training or inference) to which a runner profile
from the inference dataset is to be scaled. In cases with
insignificant distribution mismatches between the inference
dataset and the training dataset, the runner profile from the
inference dataset can be scaled based on one or more
characteristics of the training dataset. This would be typical
for machine learning practice. On the other hand, in cases
with significant distribution mismatches between the infer-
ence dataset and the training dataset, the runner profile from
the inference dataset can be scaled based on one or more
characteristics of the inference dataset. This would not be
typical for machine learning practice. Such scaling practice
improves the trained model’s ability to generalize to new or
unseen data.

[0071] At step 340, the method includes scaling a runner
profile from the first dataset based on the selected one of the
first dataset or the second dataset. For example, the first
dataset (e.g., the example inference dataset) can be selected
when there is a significant distribution mismatch between it
and the second dataset (e.g., the example training dataset) at
step 330. Thus, instead of scaling the runner profile from the
first dataset in the same manner as scaling used for the
second dataset, which would be typical for machine learning
practice, the runner profile from the first dataset can be
scaled based on one or more characteristics of the first
dataset. As used herein, a scaled runner profile or dataset has
undergone a scaling process, where the values of the data
have been transformed to a specific range or distribution.
Scaling is a preprocessing step in machine learning to ensure
that all features have a similar scale and to prevent certain
features from dominating the learning process due to their
larger values. Two example scaling processes are standard-
ization (also known as z-score normalization) and normal-
ization (also known as min-max scaling). This disclosure
contemplates performing data scaling using tools known in
the art including, but not limited to using a spreadsheet (e.g.,
MICROSOFT EXCEL spreadsheets of Microsoft Corp. of
Redmond, WA), a computer program or application (e.g.,
MATLAB platform of MathWorks Corp. of Natick, MA), or
a programming language (e.g., Python) library or toolkit. It
should be understood that standardization and normalization
are provided only as example scaling techniques. This
disclosure contemplates using other scaling techniques with
the implementations described herein.

[0072] In some implementations, the runner profile from
the first dataset is scaled by standardizing the runner profile
from the first dataset based on at least one characteristic of
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the first dataset. Standardization (also known as z-score
normalization or z-score scaling) transforms the data of the
first dataset to have a mean of zero and a standard deviation
of one. For example, standardization is performed using
Equation (1) below, resulting in a distribution centered
around zero with a unit variance. Standardization is useful
because the features in running-related data have different
scales and units and therefore it helps to bring them to a
common scale.

X—H 0

a

Kstandardized =

[0073] where X, . q0ruizeq 15 the standardized value of the
data point x, x is the original value of the data point, p is the
mean of the dataset, and ¢ is the standard deviation of the
dataset. According to Equation (1) the mean (u) is subtracted
from each data point (x) and then divided by the standard
deviation (). This transformation centers the data around
zero and scales it based on the spread of the data.

[0074] In some implementations, the runner profile from
the first dataset is scaled by normalizing the runner profile
from the first dataset based on at least one characteristic of
the first dataset. Normalization (also known as min-max
scaling) scales the data of the first dataset to a fixed range,
typically between O and 1. For example, normalization is
performed using Equation (2) below. Normalization is use-
ful when it is desired to preserve the relative relationships
and proportions between the data points.

X -y @

Knormatized = — 0
X

[0075] where X, ,naiizeq 15 the normalized value of the
data point x, x is the original value of the data point, ymin
is the minimum value in the dataset, and ymax is the
maximum value in the dataset. According to Equation (2) the
minimum value (x,,,,) is subtracted from each data point (x)
and then divided by the range (X,,,,—X,.:»). This process
scales the data to a range between 0 and 1, where the
minimum value becomes O and the maximum value
becomes 1.

[0076] Optionally, prior to scaling at step 340, the runner
profile is extracted from the first dataset. The runner profile
includes metrics for a single training period. As described
herein, the runner profile may be associated with the most-
recent training period (e.g. week) for a retrospective analysis
or associated with a future training period (e.g. week) for a
prospective analysis. In some implementations, the runner
profile includes at least one volume metric, at least one
intensity metric, and at least one long run fraction metric.
Optionally, the runner profile further includes one or more of
at least one consistency metric, at least one variability
metric, at least one dynamic metric, or at least one physi-
ological metric. For example, in some implementations, the
runner profile includes at least one consistency metric, at
least one volume metric, at least one intensity metric, and at
least one long run fraction metric. Such an implementation
is described in the Examples below. Additionally, as
described below, the runner profile is a scaled runner profile
or feature vector.
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[0077] An example unscaled runner profile and scaled
runner profile (also referred to herein as “feature vector”)
extracted from the data associated with the week of Jul. 31,
2023 in the example inference dataset is provided below.
The feature vector has been standardized based on charac-
teristics of the example inference dataset, e.g. using the
mean and standard deviation shown in FIGS. 4A and 4B,
respectively. The unscaled/scaled runner profile includes (in
order) short-term, medium-term, and long-term metrics for
consistency (STCon, MTCon, ITCon), volume (STVol,
MTVol, LTVol), long run fraction (STLrf, MTLrf, LTLrf),
and intensity (STPac, MTPac, LTPac).
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injury is a running-related injury such as an injury affecting
the runner’s bones, joints, or soft tissue.

[0080] In some implementations, the runner profile input
into the model at step 350 includes metrics from the most-
recent training period. In other implementations, the runner
profile input into the model at step 350 includes metrics
calculated for the next (e.g., future) training period. A
prospective runner profile can be calculated, for example,
based on the runner’s training plan (volume, intensity, etc.)
for an upcoming training period. In either implementation,
the prediction at step 360 allows the runner to assess, adjust,

Unscaled Runner Profile

[[1.40000000e+01
4.96233333e+01

1.16666667e+01
5.03641667e+01

8.75000000e+00
1.95784442e-01

4.60200000e+01
2.24654677e-01

2.44558346e-01 4.81551499e+02  4.87855176e+02 4.98658107e+02]]
Feature Vector (Scaled Runner Profile)
[3.14433259 3.08038607 174315336 -0.92475758
-0.5362047 -0.90107941 -0.81146885 ~1.15755997
-1.74963181 -0.45978856 -0.1082623 1.44279791]
[0078] At step 350, the method includes inputting, into a tailor, etc. his training schedule to minimize likelihood of, or

trained machine learning model, the runner profile. The
runner profile is a “feature vector”, e.g. the feature vector
shown above. In other words, the runner profile input into
the trained machine learning model has been scaled. This
disclosure contemplates that the trained machine learning
model can be the machine learning model 100 shown in FIG.
1 such that the runner profile is the input 110 to the machine
learning model 100 of FIG. 1. The runner profile input into
the trained machine learning model is a vector or tensor (see
feature vector above). In some implementations, the trained
machine learning model is a deep learning model. Alterna-
tively or additionally, in some implementations, the trained
machine learning model is an artificial neural network.
Optionally, the trained machine learning model can be the
example ANN described in the Example below (see FIGS.
6 and 7). It should be understood that the trained ANN
described in the Examples is provided only as an example.
This disclosure contemplates using other trained machine
learning models with the techniques described herein.

[0079] At step 360, the method includes predicting, using
the trained machine learning model, a risk of a musculo-
skeletal injury based on the runner profile. This disclosure
contemplates that the trained machine learning model can be
the machine learning model 100 shown in FIG. 1 such that
the risk of musculoskeletal injury is the output 120 of the
machine learning model 100 of FIG. 1. As described herein,
the trained machine learning model is configured to analyze
input “features” and predict risk of musculoskeletal injury
based on the same. In some implementations, the trained
machine learning model outputs a probability of musculo-
skeletal injury (e.g., a logistic regression). Alternatively, the
trained machine learning model classifies the runner profile
into a plurality of risk categories (e.g., logistic regression
classification). Risk categories can optionally include injury/
no injury, low risk/high risk, low risk/medium risk/high risk,
etc. classifications. As described herein, the musculoskeletal

in some cases avoid, suffering a musculoskeletal injury.
[0081] Optionally, in some implementations, the method
includes adjusting a training plan for a runner based on the
prediction of step 360. This may include one or more of:
reducing the number of planned runs in the next training
period, reducing the planned volume in the next training
period, reducing the planned intensity in the next training
period, and/or reducing the planned long run volume in the
next training period. Optionally, the method includes per-
forming the method of FIG. 3 A after the adjustment. In other
words, this disclosure contemplates an iterative process to
identify a training plan that minimizes the likelihood of
musculoskeletal injury.

[0082] Referring now to FIG. 3B, a flowchart of another
example method for predicting risk of running-related injury
is shown. This disclosure contemplates that the method of
FIG. 3B can be performed using one or more computing
devices, e.g., computing device 500 shown in FIG. 5. At step
380, the method includes retrieving an inference dataset
comprising running-related data. The inference dataset may
be retrieved from an electronic runner’s log and/or from a
data storage medium (e.g. memory). Dataset retrieval is
described above with regard to FIG. 3A. The inference
dataset can optionally be stored in a data storage medium
(e.g. memory).

[0083] The inference dataset includes running-related data
for a plurality of training periods (e.g. weeks). The running-
related data includes a plurality of metrics for each of a
plurality of training periods. In other words, the inference
dataset is not limited to data for a single training period. It
instead includes data for a plurality of training periods. In
fact, it is insufficient to retrieve data for a single training
period for the method of FIG. 3B at least because of the data
scaling technique (e.g. described below at step 382), which
requires information about one or more characteristics of the
inference dataset. In some implementations, the inference
dataset includes running-related data, which is grouped by
week, for at least two times the number of training periods
averaged for a long-term metric. For example, if the long-
term metric is an average of 12 training periods, then the
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inference dataset includes running-related data, which is
grouped by week, for at least 24 training periods. In some
implementations, the inference dataset includes running-
related data, which is grouped by week, for between two and
four times the number of training periods averaged for a
long-term metric. For example, if the long-term metric is an
average of 12 training periods, then the inference dataset
includes running-related data, which is grouped by week, for
between 24 and 48 training periods. Optionally, the infer-
ence dataset includes running-related data, which is grouped
by week, for about three times the number of training
periods averaged for a long-term metric. For example, if the
long-term metric is an average of 12 training periods, then
the inference dataset includes running-related data, which is
grouped by week, for about 36 training periods. An example
inference dataset is discussed above. It includes 40 weeks
(i.e. between the week of Oct. 31, 2022 and the week of Jul.
31, 2023) of running-related data, which is grouped by
week, for an example runner (the present inventor).

[0084] At step 382, the method includes scaling a runner
profile from the inference dataset based on at least one
characteristic of the inference dataset. Thus, instead of
scaling the runner profile from the inference dataset in the
same manner used for scaling the dataset used for training
(i.e. a training dataset) a machine learning model, which
would be typical for machine learning practice, the runner
profile can be scaled based on one or more characteristics
(e.g. mean, standard deviation, minimum value, maximum
value, etc.) of the inference dataset. The inference dataset is
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[0086] Optionally, prior to scaling at step 382, the runner
profile is extracted from the inference dataset. As described
herein, the runner profile may be associated with the most-
recent training period (e.g. week) for a retrospective analysis
or associated with a future training period (e.g. week) for a
prospective analysis. The runner profile includes the plural-
ity of metrics for a single training period. In some imple-
mentations, the runner profile includes at least one volume
metric, at least one intensity metric, and at least one long run
fraction metric. Optionally, the runner profile further
includes one or more of at least one consistency metric, at
least one variability metric, at least one dynamic metric, or
at least one physiological metric. For example, in some
implementations, the runner profile includes at least one
consistency metric, at least one volume metric, at least one
intensity metric, and at least one long run fraction metric.
Such an implementation is described in the Examples below.
[0087] An example unscaled runner profile and scaled
runner profile (also referred to herein as “feature vector”)
extracted from the data associated with the week of Jul. 31,
2023 in the example inference dataset is provided below.
The feature vector has been standardized based on the
characteristics of the example inference dataset, e.g. using
the mean and standard deviation shown in FIGS. 4A and 4B,
respectively. The unscaled/scaled runner profile includes (in
order) short-term, medium-term, and long-term metrics for
consistency (STCon, MTCon, LTCon), volume (STVol,
MTVol, LTVol), long run fraction (STLrf, MTLrf, LTLrf),
and intensity (STPac, MTPac, LTPac).

Unscaled Runner Profile

[[1.40000000e+01
4.96233333e+01
2.44558346e-01

1.16666667e+01
5.03641667e+01
4.81551499e+02

8.75000000e+00
1.95784442e-01
4.87855176e+02

4.60200000e+01
2.24654677e-01
4.98658107e+02]]

Feature Vector (Scaled Runner Profile)

[3.14433259 3.08058607 174315336 -0.92475758
-0.5362047 -0.90107941 -0.81146885 -1.15755997
-1.74963181 -0.45978856 -0.1082623 1.44279791]

different than the training dataset. For example, if the [0088] At step 384, the method includes inputting, into a

inference and training datasets are associated with the same
runner, the inference and training datasets may cover dif-
ferent periods of time. Or the inference and training datasets
may be associated with different runners. In either case, one
may expect distributions of the inference and training data-
sets to be different.

[0085] In some implementations, the runner profile from
the inference dataset is scaled by standardizing the runner
profile based on one or more characteristics of the inference
dataset. Standardization (also known as z-score normaliza-
tion or z-score scaling) transforms the data of the runner
profile from the inference dataset to have a mean of zero and
a standard deviation of one. For example, standardization is
performed using Equation (1) above. In some implementa-
tions, the runner profile from the inference dataset is scaled
by normalizing the runner profile based on one or more
characteristics of the inference dataset. Normalization (also
known as min-max scaling) scales the data of the inference
dataset to a fixed range, typically between O and 1. For
example, normalization is performed using Equation (2)
above.

trained machine learning model, the runner profile. The
runner profile is a “feature vector”, e.g. the feature vector
shown above. This disclosure contemplates that the trained
machine learning model can be the machine learning model
100 shown in FIG. 1 such that the runner profile is the input
110 to the machine learning model 100 of FIG. 1. The runner
profile input into the trained machine learning model is a
vector or tensor (see feature vector above). In some imple-
mentations, the trained machine learning model is a deep
learning model. Alternatively or additionally, in some imple-
mentations, the trained machine learning model is an arti-
ficial neural network. Optionally, the trained machine learn-
ing model can be the example ANN described in the
Example below (see FIGS. 6 and 7). It should be understood
that the trained ANN described in the Example is provided
only as an example. This disclosure contemplates using
other trained machine learning models with the techniques
described herein.

[0089] At step 386, the method includes predicting, using
the trained machine learning model, a risk of a musculo-
skeletal injury based on the runner profile. This disclosure
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contemplates that the trained machine learning model can be
the machine learning model 100 shown in FIG. 1 such that
the risk of musculoskeletal injury is the output 120 of the
machine learning model 100 of FIG. 1. As described herein,
the trained machine learning model is configured to analyze
input “features” and predict risk of musculoskeletal injury
based on the same. In some implementations, the trained
machine learning model outputs a probability of musculo-
skeletal injury (e.g., a logistic regression). Alternatively, the
trained machine learning model classifies the runner profile
into a plurality of risk categories (e.g., logistic regression
classification). Risk categories can optionally include injury/
no injury, low risk/high risk, low risk/medium risk/high risk,
etc. classifications. As described herein, the musculoskeletal
injury is a running-related injury such as an injury affecting
the runner’s bones, joints, or soft tissue.

[0090] In some implementations, the runner profile input
into the model at step 384 includes metrics from the most-
recent training period. In other implementations, the runner
profile input into the model at step 384 includes metrics
calculated for the next (e.g., future) training period. A
prospective runner profile can be calculated, for example,
based on the runner’s training plan (volume, intensity, etc.)
for an upcoming training period. In either implementation,
the prediction at step 386 allows the runner to assess, adjust,
tailor, etc. his training schedule to minimize likelihood of, or
in some cases avoid, suffering a musculoskeletal injury.
[0091] Optionally, in some implementations, the method
includes adjusting a training plan for a runner based on the
prediction of step 386. This may include one or more of:
reducing the number of planned runs in the next training
period, reducing the planned volume in the next training
period, reducing the planned intensity in the next training
period, and/or reducing the planned long run volume in the
next training period. Optionally, the method includes per-
forming the method of FIG. 3 A after the adjustment. In other
words, this disclosure contemplates an iterative process to
identify a training plan that minimizes the likelihood of
musculoskeletal injury.

[0092] It should be appreciated that the logical operations
described herein with respect to the various figures may be
implemented (1) as a sequence of computer implemented
acts or program modules (i.e., software) running on a
computing device (e.g., the computing device described in
FIG. 5), (2) as interconnected machine logic circuits or
circuit modules (i.e., hardware) within the computing device
and/or (3) a combination of software and hardware of the
computing device. Thus, the logical operations discussed
herein are not limited to any specific combination of hard-
ware and software. The implementation is a matter of choice
dependent on the performance and other requirements of the
computing device. Accordingly, the logical operations
described herein are referred to variously as operations,
structural devices, acts, or modules. These operations, struc-
tural devices, acts and modules may be implemented in
software, in firmware, in special purpose digital logic, and
any combination thereof. It should also be appreciated that
more or fewer operations may be performed than shown in
the figures and described herein. These operations may also
be performed in a different order than those described
herein.

[0093] Referring to FIG. 5, an example computing device
500 upon which the methods described herein may be
implemented is illustrated. It should be understood that the
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example computing device 500 is only one example of a
suitable computing environment upon which the methods
described herein may be implemented. Optionally, the com-
puting device 500 can be a well-known computing system
including, but not limited to, personal computers, servers,
handheld or laptop devices, multiprocessor systems, micro-
processor-based systems, network personal computers
(PCs), minicomputers, mainframe computers, embedded
systems, and/or distributed computing environments includ-
ing a plurality of any of the above systems or devices.
Distributed computing environments enable remote comput-
ing devices, which are connected to a communication net-
work or other data transmission medium, to perform various
tasks. In the distributed computing environment, the pro-
gram modules, applications, and other data may be stored on
local and/or remote computer storage media.

[0094] In its most basic configuration, computing device
500 typically includes at least one processing unit 506 and
system memory 504. Depending on the exact configuration
and type of computing device, system memory 504 may be
volatile (such as random access memory (RAM)), non-
volatile (such as read-only memory (ROM), flash memory,
etc.), or some combination of the two. This most basic
configuration is illustrated in FIG. 5 by box 502. The
processing unit 506 may be a standard programmable pro-
cessor that performs arithmetic and logic operations neces-
sary for operation of the computing device 500. The com-
puting device 500 may also include a bus or other
communication mechanism for communicating information
among various components of the computing device 500.

[0095] Computing device 500 may have additional fea-
tures/functionality. For example, computing device 500 may
include additional storage such as removable storage 508
and non-removable storage 510 including, but not limited to,
magnetic or optical disks or tapes. Computing device 500
may also contain network connection(s) 516 that allow the
device to communicate with other devices. Computing
device 500 may also have input device(s) 514 such as a
keyboard, mouse, touch screen, etc. Output device(s) 512
such as a display, speakers, printer, etc. may also be
included. The additional devices may be connected to the
bus in order to facilitate communication of data among the
components of the computing device 500. All these devices
are well known in the art and need not be discussed at length
here.

[0096] The processing unit 506 may be configured to
execute program code encoded in tangible, computer-read-
able media. Tangible, computer-readable media refers to any
media that is capable of providing data that causes the
computing device 500 (i.e., a machine) to operate in a
particular fashion. Various computer-readable media may be
utilized to provide instructions to the processing unit 506 for
execution. Example tangible, computer-readable media may
include, but is not limited to, volatile media, non-volatile
media, removable media and non-removable media imple-
mented in any method or technology for storage of infor-
mation such as computer readable instructions, data struc-
tures, program modules or other data. System memory 504,
removable storage 508, and non-removable storage 510 are
all examples of tangible, computer storage media. Example
tangible, computer-readable recording media include, but
are not limited to, an integrated circuit (e.g., field-program-
mable gate array or application-specific IC), a hard disk, an
optical disk, a magneto-optical disk, a floppy disk, a mag-
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netic tape, a holographic storage medium, a solid-state
device, RAM, ROM, electrically erasable program read-
only memory (EEPROM), flash memory or other memory
technology, CD-ROM, digital versatile disks (DVD) or other
optical storage, magnetic cassettes, magnetic tape, magnetic
disk storage or other magnetic storage devices.

[0097] In an example implementation, the processing unit
506 may execute program code stored in the system memory
504. For example, the bus may carry data to the system
memory 504, from which the processing unit 506 receives
and executes instructions. The data received by the system
memory 504 may optionally be stored on the removable
storage 508 or the non-removable storage 510 before or after
execution by the processing unit 506.

[0098] It should be understood that the various techniques
described herein may be implemented in connection with
hardware or software or, where appropriate, with a combi-
nation thereof. Thus, the methods and apparatuses of the
presently disclosed subject matter, or certain aspects or
portions thereof, may take the form of program code (i.e.,
instructions) embodied in tangible media, such as floppy
diskettes, CD-ROMs, hard drives, or any other machine-
readable storage medium wherein, when the program code
is loaded into and executed by a machine, such as a
computing device, the machine becomes an apparatus for
practicing the presently disclosed subject matter. In the case
of program code execution on programmable computers, the
computing device generally includes a processor, a storage
medium readable by the processor (including volatile and
non-volatile memory and/or storage elements), at least one
input device, and at least one output device. One or more
programs may implement or utilize the processes described
in connection with the presently disclosed subject matter,
e.g., through the use of an application programming inter-
face (API), reusable controls, or the like. Such programs
may be implemented in a high level procedural or object-
oriented programming language to communicate with a
computer system. However, the program(s) can be imple-
mented in assembly or machine language, if desired. In any
case, the language may be a compiled or interpreted lan-
guage and it may be combined with hardware implementa-
tions.

EXAMPLES

[0099] The following examples are put forth so as to
provide those of ordinary skill in the art with a complete
disclosure and description of how the compounds, compo-
sitions, articles, devices and/or methods claimed herein are
made and evaluated, and are intended to be purely exem-
plary and are not intended to limit the disclosure. Efforts
have been made to ensure accuracy with respect to numbers
(e.g., amounts, values, etc.), but some errors and deviations
should be accounted for.

Example 1

[0100] In Example 1, a labeled dataset including running-
related data for one individual runner is created. The indi-
vidual runner is the inventor of the present application. The
labeled dataset was collected and used to demonstrate the
feasibility of applying machine learning to predict risk of
running-related injury. The labeled dataset contains the
individual’s running-related data downloaded from the
GARMIN CONNECT website of Garmin International of
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Olathe, Kansas in XLS file format. It should be understood
that XL.S format is only an example and that data may be
downloaded in other file formats including, but not limited
to, CSV file format. In addition to data downloaded from the
GARMIN CONNECT website, each sample was tagged
with a label-0 for non-injury state and 1 for injury state.
Thus, the dataset is a labeled dataset. The dataset includes
running-related data that is grouped by week for the period
between Jan. 1, 2018 and Apr. 17, 2023. Each week (i.e.,
sample) is tagged with an injury/non-injury label. A labeled
sample thus includes a plurality of metrics and correspond-
ing label associated with a given week.

[0101] The 3 samples tagged as injury class are the weeks
of Aug. 31, 2020; Apr. 22, 2019; and Jul. 2, 2018, which
represent the weeks of injury occurrence. The Aug. 31, 2020
injury was to the right calf (possible soleus muscle strain)
and resulted in the individual runner taking 4 consecutive
days off (i.e., no running) during the following week of Sep.
7, 2020. The Apr. 22, 2019 injury was to the right knee
(possible patellar tendonitis) and resulted in the individual
runner taking a substantial amount of time (i.e., no running)
off during the following eight weeks. The Jul. 2, 2018 injury
was to the right groin (possible groin strain) and resulted in
the individual runner taking 4 consecutive days off (i.e., no
running) spanning the weeks of July 2 and 9, 2018.

[0102] The labeled dataset is unbalanced because samples
in the injury class are underrepresented. For example, there
are only 3 samples tagged with the injury state label (1),
while more than 250 samples are tagged with the non-injury
state label (0). Therefore, the labeled dataset was augmented
as described in U.S. Pat. No. 11,515,045. In particular, a
plurality of synthetic samples were created based on 3
samples tagged as injury class (i.e., the samples for weeks of
Aug. 31, 2020; Apr. 22, 2019; and Jul. 2, 2018), and such
synthetic samples were appended to the labeled dataset.
[0103] After augmenting the dataset, the metrics were
scaled. Scaling was accomplished using the PANDAS tool
kit in the Python programming language. Both the Python
programming language and the PANDAS tool kit, which is
a data analysis tool, are well known in the art and therefore
not described herein. In the example, the augmented dataset
was standardized (see e.g., Equation (1)).

[0104] The scaled, augmented dataset was used to train a
machine learning model. Various ANNs were trained using
the scaled, augmented dataset. Model training was accom-
plished using the KERAS tool kit in the Python program-
ming language. Both the Python programming language and
the KERAS tool kit, which is a deep learning framework, are
well known in the art and therefore not described herein. In
particular, the scaled, augmented dataset was read into a data
frame using the Python programming language. In the
example, 80% of the scaled, augmented dataset serves as the
training dataset and 20% of the scaled, augmented dataset
serves as the testing dataset. Train/test splitting of the scaled,
augmented dataset and model training is accomplished using
functions in the KERAS tool kit. This includes selecting
model architecture and hyperparameter.

[0105] Various ANNs were trained using the scaled, aug-
mented dataset and evaluated for their ability to distinguish
between injury/non-injury classes using area under the
receiver operator curve (AUC) as the evaluation metric.
AUC provides an aggregate measure of performance across
all possible classification thresholds, i.e., a measure of the
model’s ability to distinguish between the injured state and
non-injured state classes. Higher AUC is associated with
better performance.
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[0106] In the example, the following 12 metrics serve as
model features: short-, medium-, and long-term consistency
metrics; short-, medium-, and long-term volume metrics;
short-, medium-, and long-term long run fraction metrics;
and short-, medium-, and long-term long run intensity
metrics. The model target is the Injury Label. ANNs with
different architectures were tested, including ANNs with 1
input layer, 1 hidden layer or 2 hidden layers, and 1 output
layer. As one example, an ANN with 1 input layer (12
nodes), 1 hidden layer (12 nodes), and 1 output layer (1
node) is referenced in FIG. 6. As shown in FIG. 7, the trained
ANN of FIG. 6 performed very well with AUC equal to 1.
[0107] The trained ANN of FIG. 6 was saved to a file in
a hierarchal data format (HDF) file format. The ANN is
configured to distinguish between injured state and non-
injured state classes based on the following features: short-,
medium-, and long-term consistency metrics; short-,
medium-, and long-term volume metrics; short-, medium-,
and long-term long run fraction metrics; and short-,
medium-, and long-term long run intensity metrics. Hyper-
parameters for the trained ANN include learning rate=0.001,
epochs=200, and batch size=16 as shown in FIG. 6. It should
be understood that hyperparameters may be optimized to
improve performance, which was not necessary for the
trained ANN.

[0108] The trained ANN of FIG. 6 has been deployed by
the individual runner in inference mode beginning around
May 1, 2023. Deployment of previous versions of the ANN
are described in U.S. Pat. No. 11,515,045. Model deploy-
ment was accomplished using the PANDAS, NUMPY, and
KERAS tool kits in the Python programming language,
which are all well known in the art. In particular, the trained
ANN (i.e., HDF file format) and a runner profile were
uploaded using the Python programming language. During
deployment, a runner profile is input into the trained ANN
of FIG. 6. The runner profile is a feature vector. An example
feature vector for week of Jul. 31, 2023 is provided below.

Feature Vector (Scaled Runner Profile) for Week of Jul. 31, 2023

[3.14433259 3.08058607 174315336 -0.92475758
-0.5362047 -0.90107941 ~0.81146885 -1.15755997
~1.74963181 -0.45978856 -0.1082623 1.44279791]
[0109] The runner profile (i.e. feature vector above)

includes (in order) the following features: short-, medium-,
and long-term consistency metrics (3.14433259, 3,
08058607, 1.74315336); short-, medium-, and long-term
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volume metrics (-0.92475758, -0.5362047, -0.90107941),
short-, medium-, and long-term long run fraction metrics
(-0.81146885, -1.15755997, -1.74963181); and short-,
medium-, and long-term long run intensity metrics (=0.
45978856, -0.1082623, 1.44279791). For the week of Jul.
31, 2023, the short-term metrics are retrospective, i.e., based
on the individual runner’s completed training plan for a past
week. In other words, the respective values for the short term
metrics are based on the individual runner’s actual metrics
for a completed week. In other examples, the short-term
metrics can be prospective, i.e., based on the individual
runner’s training plan for a future week. In other words, the
respective values for the short term metrics can be based on
the individual runner’s expectations for a future week (e.g.
the next week). The trained ANN of FIG. 6 outputs a
prediction based on the input runner profile.

Example 2

[0110] In Example 2, the present inventor’s runner profile
associated with the week of Jan. 8, 2024 of an inference
dataset is scaled according to two different techniques: (A)
scaling based on the mean and standard deviation of the
inference dataset and (B) scaling based on the mean and
standard deviation of the example training dataset shown in
FIGS. 4C and 4D, respectively. The scaled runner profile
(feature vector) is then input into the trained ANN of FIG.
6. As shown below, the prediction output from the trained
ANN of FIG. 6 is different. In particular, the predicted risk
was LOW for scaling technique (A) where the profile was
scaled based on characteristics of the inference dataset,
while predicted risk was HIGH for scaling technique (B)
where the profile was scaled based on characteristics of the
training dataset. In other words, different scaling techniques
resulted in different predictions. The present inventor did not
sustain an injury during the week of Jan. 8, 2024, so the
scaling technique (A) prediction was consistent with out-
come. Example 2 demonstrates that the scaling technique
may affect the the prediction. In Example 2, the trained ANN
of FIG. 6 was better able to generalize to the new data (i.e.
feature vector from week of Jan. 8, 2024) when scaling
technique (A) was employed (because of differences
between inference and training datasets).

[0111] Scaling Technique (A): The runner profile was
standardized based on characteristics of the inference data-
set, e.g. using the mean and standard deviation of the
inference dataset. The unscaled/scaled runner profile
includes (in order) short-term, medium-term, and long-term
metrics for consistency (STCon, MTCon, ITCon), volume
(STVol, MTVol, LTVol), long run fraction (STLrf, MTLrf,
LTLrf), and intensity (STPac, MTPac, LTPac).

Unscaled Runner Profile

[[8.00000000e+00
4.41566667e+01

7.33333333e+00
4.79458333e+01

7.91666667e+00
2.45283019e-01

5.30000000e+01
2.34488348e-01

2.50394805¢-01 4.83018868e+02 4.893183366+02 4.90875119e+02]]
Feature Vector (Scaled Runner Profile)
[-0.02704679 -0.78072113 -1.17342243 0.64217382
-1.52315182 -2.46246612 0.05730261 -0.72548087
1.48988674 -0.61823329 -0.33571956 -0.44240896]
Prediction

Your injury risk is LOW
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[0112] Scaling Technique (B): The runner profile was
standardized based on characteristics of the training dataset,
e.g. using the mean and standard deviation shown in FIGS.
4C and 4C, respectively. The unscaled/scaled runner profile
includes (in order) short-term, medium-term, and long-term
metrics for consistency (STCon, MTCon, ITCon), volume
(STVol, MTVol, LTVol), long run fraction (STLrf, MTLrf,
LTLrf), and intensity (STPac, MTPac, LTPac).
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Unscaled Runner Profile

[[8.00000000e+00  7.33333333e+00 7.91666667e+00 5.30000000e+01
4.41566667e+01  4.79458333e+01 2.45283019e-01 2.34488348e-01
2.50394805¢-01  4.83018868e+02 4.89318336e+02 4.90875119e+02]]

Feature Vector (Scaled Runner Profile)

[0.28128909 -0.08229439 0.51814386 0.7646672
0.00667873 0.47812647 -0.12176582 -0.28742547
0.05745841 -0.0359045 -0.04334276 0.51815499]

Prediction

Your injury risk is HIGH. Be careful!

Example 3

[0113] In Example 3, the present inventor used the pre-
diction output from the trained ANN of FIG. 6 to guide his
training. For example, on Dec. 31, 2023, the inventor
initially planned the following for the upcoming week of
Jan. 1, 2024:8 total runs (includes 6 running days with 1
workout (where this day includes 3 separate runs-warmup,
workout session, cooldown) and 1 day off), 53.5 total miles,
a 13.5 mile long run, and an average pace of about 8:01
minutes per mile. The short-term metrics were therefore as
follows: STCon=8, STVol=53.5, STLrf=0.2523,
STPac=481. An inference dataset of the present inventor’s
running-related data for the previous 36 weeks plus the plan
for the future week of Jan. 1, 2024 was created. The present
inventor’s runner profile associated with the week of Jan. 1,
2024 (i.e. a single training period) was scaled based on the
mean and standard deviation of the inference dataset. The
scaled runner profile (feature vector) was then input into the
trained ANN of FIG. 6. As shown below, the prediction
output from the trained ANN of FIG. 6 was HIGH.

[0114] Since the predicted risk was HIGH, the present
inventor adjusted his plan for the upcoming week of Jan. 1,
2024:8 total runs (includes 6 running days with 1 workout
(where this day includes 3 separate runs-warmup, workout
session, cooldown) and 1 day off), 51 total miles, a 12 mile
long run, and an average pace of about 8:05 minutes per
mile. The short-term metrics were therefore as follows:
STCon=8, STVol=51, STLrf=0.2353, STPac=485. In other
words, the planned adjustments included slight changes to
total volume (-2.5 miles), long run distance (-1.5 miles),
and pace (~4 seconds slower per mile) as compared to the
initial plan. An inference dataset of the present inventor’s
running-related data for the previous 36 weeks plus the
adjusted plan for the future week of Jan. 1, 2024 was created.
The present inventor’s runner profile associated with the
week of Jan. 1, 2024 (i.e. a single training period) was scaled
based on the mean and standard deviation of the inference
dataset. The scaled runner profile was then input into the
trained ANN of FIG. 6. As shown below, the prediction
output from the trained ANN of FIG. 6 was LOW.

Unscaled Runner Profile

[[8.00000000e+00 7.00000000e+00 7.91666667e+00 5.35000000e+01
4.09033333e+01 4.87308333e+01 2.52336449¢-01 2.52298349¢-01
2.51142637e-01 4.81308411e+02 4.93545758e+02 4.90466337e+02]]

Feature Vector (Scaled Runner Profile)

[-0.10101525 -1.16073485 -1.22104437 0.71023988

-2.9275094 -2.15387799 0.2812331 0.63860507

1.63450496 -0.77235869 0.27702792 -0.60609061]
Prediction

Your injury risk is HIGH. Be careful!
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Unscaled Runner Profile

7.00000000e+00
4.85225000e+01
4.85294118e+02

7.91666667e+00
2.35294118e-01
4.95491224e+02

[[8.00000000e+00
4.00700000e+01
2.49722443e-01

5.10000000e+01
2.46617572e-01
4.90854758e+02]]

Feature Vector (Scaled Runner Profile)

[-0.10101525 -1.16073485 -1.22104437 0.29830778
-3.08695893 -2.35558612 -0.27427537 0.20263335
1.40925142 -0,50068181 0.56978048 -0.51637347]
Prediction
Your injury risk is LOW.
[0115] The present inventor executed according to the comparing the respective histogram for the first dataset to

adjusted plan and did not sustain an injury during the week
of Jan. 1, 2024. This example demonstrates how a trained
ANN can be deployed to assist a runner in avoiding injuries
by adjusting training plan for future training periods.
[0116] Although the subject matter has been described in
language specific to structural features and/or methodologi-
cal acts, it is to be understood that the subject matter defined
in the appended claims is not necessarily limited to the
specific features or acts described above. Rather, the specific
features and acts described above are disclosed as example
forms of implementing the claims.

1. A method for predicting risk of running-related injury,
the method comprising:

retrieving a first dataset comprising running-related data;

comparing a first distribution of the first dataset to a

second distribution of a second dataset comprising
running-related data;

based on the comparison, selecting one of the first dataset

or the second dataset;

scaling a runner profile from the first dataset based on the

selected one of the first dataset or the second dataset;
inputting, into a trained machine learning model, the
runner profile; and

predicting, using the trained machine learning model, a

risk of a musculoskeletal injury based on the runner
profile.

2. The method of claim 1, wherein comparing the first
distribution of the first dataset to the second distribution of
the second dataset comprises using a statistical technique.

3. The method of claim 2, wherein the statistical technique
comprises:

calculating respective summary statistics for each of the

first dataset and the second dataset; and

comparing the respective summary statistics of the first

dataset to the respective summary statistics of the
second dataset.

4. (canceled)

5. The method of claim 1, wherein comparing the first
distribution of the first dataset to the second distribution of
the second dataset comprises using a visualization tech-
nique.

6. The method of claim 5, wherein the visualization
technique comprises:

creating respective histograms for each of the first dataset

and the second dataset;

plotting the respective histograms for each of the first

dataset and the second dataset; and

the respective histogram of the second dataset.

7. The method of claim 1, wherein scaling the runner
profile from the first dataset based on the selected one of the
first dataset or the second dataset comprises standardizing or
normalizing the runner profile from the first dataset based on
at least one characteristic of the selected one of the first
dataset or the second dataset.

8. (canceled)

9. The method of claim 1, wherein the first dataset is an
inference dataset, and the second dataset is a training data-
set, and wherein the selected one of the first dataset or the
second dataset is the inference dataset.

10. (canceled)

11. The method of claim 1, wherein the first dataset and
the second dataset comprise running-related data for a same
runner, or wherein each of the first dataset and the second
dataset comprises running-related data for a different runner.

12. (canceled)

13. The method of claim 1, wherein the runner profile
comprises at least one volume metric, at least one intensity
metric, and at least one long run fraction metric.

14. (canceled)

15. (canceled)

16. (canceled)

17. The method of claim 13, wherein the runner profile
further comprises one or more of at least one consistency
metric, at least one variability metric, at least one dynamic
metric, or at least one physiological metric.

18. The method of claim 1, wherein the trained machine
learning model is configured to predict the risk of the
musculoskeletal injury by classifying the runner profile into
one of a plurality of risk categories, or wherein the trained
machine learning model is configured to predict the risk of
the musculoskeletal injury by providing a probability of the
musculoskeletal injury.

19. (canceled)

20. (canceled)

21. (canceled)

22. The method of claim 1, further comprising adjusting
a training plan based on the predicted risk of the musculo-
skeletal injury.

23. (canceled)

24. A method for predicting risk of running-related injury,
the method comprising:

retrieving an inference dataset comprising running-related

data, the running-related data comprising a plurality of
metrics for each of a plurality of training periods;
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scaling a runner profile from the inference dataset based
on at least one characteristic of the inference dataset,
wherein the runner profile comprises the plurality of
metrics for a single training period;

inputting, into a trained machine learning model, the

runner profile; and

predicting, using the trained machine learning model, a

risk of a musculoskeletal injury based on the runner
profile.

25. The method of claim 24, wherein a number of the
plurality of training periods is at least two times greater than
a number of training periods averaged for a long-term
metric.

26. The method of claim 24 or 25, wherein the trained
machine learning model is trained using a training dataset,
wherein the training dataset is different than the inference
dataset.

27. The method of claim 26, wherein the inference dataset
and the training dataset comprise running-related data for a
same runner, or wherein each of the inference dataset and the
training dataset comprises running-related data for a differ-
ent runner.

28. (canceled)

29. The method of claim 24, wherein the at least one
characteristic of the inference dataset comprises a mean or
a standard deviation.
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30. The method of claim 24, wherein the plurality of
metrics comprises at least one volume metric, at least one
intensity metric, and at least one long run fraction metric.

31. The method of claim 24, further comprising adjusting
a training plan based on the predicted risk of the musculo-
skeletal injury.

32. A system for predicting risk of running-related injury,
the system comprising:

at least one processor and at least one memory, the at least

one memory having computer-executable instructions
stored thereon that, when executed by the at least one
processor, cause the at least one processor to:

retrieve an inference dataset comprising running-related
data, the running-related data comprising a plurality of
metrics for each of a plurality of training periods;

scale a runner profile from the inference dataset based on
at least one characteristic of the inference dataset,
wherein the runner profile comprises the plurality of
metrics for a single training period;

input, into a trained machine learning model, the runner
profile; and

predict, using the trained machine learning model, a risk
of a musculoskeletal injury based on the runner profile.
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